The MEG experiment at PSI: Status and Prospects

Giovanni Signorelli INFN Sezione di Pisa on behalf of the MEG collaboration

PANIC 2008 9-14 November 2008 Eilat, Israel

The MEG collaboration

Outline

• Physics motivation for a $\mu \to e \gamma$ experiment

0.5-----

- The $\mu
 ightarrow e \gamma$ decay
- The detector
 - Beam line & target
 - Spectrometer
 - Timing Counter
 - LXe calorimeter
 - Calibrations
 - Electronics
- Status
- Future

The $\mu \rightarrow e\gamma$ decay

- The $\mu \rightarrow e\gamma$ decay is forbidden in the Standard Model of elementary particles because of the (accidental) conservation of lepton family numbers;
- The introduction of neutrino masses and mixings induces $\mu \rightarrow e\gamma$ radiatively, but at a negligible level

• All SM extensions enhance the rate through mixing in the high energy sector of the theory

- SUSY SU(5) predictions: LFV induced by finite slepton mixing through radiative corrections. The mixing could be large due to the top-quark mass at a level of 10⁻¹² 10⁻¹⁵
- SO(10) predicts even larger BR:
 - $m(\tau)/m(\mu)$ enhancement
- Models with right-handed neutrinos also predict large BR
- \Rightarrow clear evidence for physics beyond the SM.
- In principle possibility to distinguish between various models e.g. angular distribution of the photon with respect to the muon spin

Historical perspective

Exp./Lab	Year	ΔEe/Ee (%)	ΔΕγ /Εγ (%)	Δ te γ (ns)	$\Delta \theta e \gamma$ (mrad)	Stop rate (s ⁻¹)	Duty cyc. (%)	BR (90% CL)
SIN	1977	8.7	9.3	I.4	-	5 X 105	100	3.6 x 10⁻9
TRIUMF	1977	IO	8.7	6.7	-	2 X 10 ⁵	100	I X IO ⁻⁹
LANL	1979	8.8	8	1.9	37	2.4 X 10 ⁵	6.4	1.7 x 10 ⁻¹⁰
Crystal Box	1986	8	8	I.3	87	4 x 10 ⁵	(69)	4.9 x 10 ⁻¹¹
MEGA	1999	I.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	$I.2 \times IO^{-II}$
MEG	2009	I	4.5	0.15	19	3 x 107	100	2 X IO ⁻¹³

FWHM 7

MEG experimental method

Easy signal selection with μ^{+} at rest

- Stopped beam of >10⁷ μ /sec in a 175 μm target
- γ detection

Liquid Xenon calorimeter based on the scintillation light

- fast: 4 / 22 / 45 ns
- high LY: ~ 0.8 * NaI
- short X_0 : 2.77 cm

• e⁺ detection

magnetic spectrometer composed by solenoidal magnet and drift chambers for momentum

scintillation counters for timing

Drift chambers

n

Timing Counter

- •Must give excellent rejection
- •Two layers of scintillators:

Outer layer, read out by PMTs: timing measurement Inner layer, read out with APDs at 90°: z-trigger

• Obtained goal σ_{time} 40 psec (100 ps FWHM)

Exp. application ^(*)	Counter size (cm) (T x W x L)	Scintillator	PMT	λ _{att} (cm)	<mark>σ</mark> t(meas)	σ _t (exp)
G.D.Agostini	3x 15 x 100	NE114	XP2020	200	120	60
T. Tanimori	3 x 20 x 150	SCSN38	R1332	180	140	110
T. Sugitate	4 x 3.5 x 100	SCSN23	R1828	200	50	53
R.T. Gile	5 x 10 x 280	BC408	XP2020	270	110	137
TOPAZ	4.2 x 13 x 400	BC412	R1828	300	210	240
R. Stroynowski	2 x 3 x 300	SCSN38	XP2020	180	180	420
Belle	4 x 6 x 255	BC408	R6680	250	90	143
MEG	4 x 4 x 90	BC404	R5924	270	38	

Best existing TC

The calorimeter

- γ Energy, position, timing
- Homogeneous 0.8 m³ volume of liquid Xe
 - 10 % solid angle
 - 65 < r < 112 cm
 - $|\cos\theta| < 0.35$ $|\phi| < 60^{\circ}$
- Only scintillation light
- Read by 848 PMT
 - 2" photo-multiplier tubes
 - Maximum coverage FF (6.2 cm cell)
 - Immersed in liquid Xe
 - Low temperature (165 K)
 - Quartz window (178 nm)
- Thin entrance wall
- Singularly applied HV
- Waveform digitizing @2 GHz
 - Pileup rejection

Calorimeter construction

Calibrations

- It is understood that in such a complex detector a lot of parameters must be constantly checked
- We are prepared for redundant calibration and monitoring
- Single detector
 - PMT equalization for LXe and TIC
 - Interbar timing (TIC)
 - Energy scale
- Multiple detectors
 - relative timing

Calibrations

The Cockcroft-Walton accelerator of the MEG experiment

...should deserve a presentation on its own!

Intro & reactions

- The Cockcroft-Walton is an extremely powerful tool, installed for monitoring and calibrating *all* the MEG experiment
- Protons on Li or B
 - Li: high rate, higher energy photon
 - B: two (lower energy) time-coincident photons

Reaction	Peak energy	σ peak	γ -lines
Li(p,y)Be	440 keV	5 mb	(17.6, 14.6) MeV
<i>В</i> (<i>p</i> ,γ) <i>C</i>	163 keV	2 10 ⁻¹ mb	(4.4, 11.7, 16.1) MeV

CW - daily calibration

- This calibration is performed every other day
 - Muon target moves away and a crystal target is inserted
- Hybrid target $(Li_2B_4O_7)$

0.02

000

0.0125

00

0.00/5

• Possibility to use the same target and select the line by changing proton energy

1000

800

Daily monitoring

- Monitor Xe light yield
 - liquid/gas purification studies
 - stability studies

< 1% knowledge of l.y. and energy scale

CW and timing counter

- The simultaneous emission of two photons in the Boron reaction is used to
 - determine relative timing between Xe and TIC
 - Inter-calibrate TIC bar (LASER)

Selected results from 2007 engineering run

- We are presently taking data but I cannot show you any plot from this year "physics" data set
- Our strategy is masking some of the data
 - *blind & likelihood* analysis

First: the rates

- Since our is a counting experiment we must be sure to have the background under control
- The *trigger* rate scales as expected
- Absolute wire rate in the chambers ok, details to be understood

calorimeter energy spectrum

rate on DCH wires

Detector performance in 2007

...a comment

- In 2007 we had an engineering run with (almost) all the apparatus running for -1 month
 - no fiber TC detector, no laser, no QEs
 - Xe light yield < than expected
 - DCH failures, noisy electronics
- In 2008 run
 - intensive study of detector stability (LXe) l.y. almost recovered

partly solved

- all detector & calibrations operational
- "new" electronics available only at the end of the run
- DCH system: some sparking chambers
- but... more months of data taking to get a physics result!

Background and Sensitivity

" Goal "		Perspectives for 2008		
Measured	Simulated	Measured 2007	Applied to 2008	
4.5 - 5.0		6.5	<	
0.15		0.27*	<	
4.5 - 9.0		15	<	
>40		>40	>	
0.1		0.12*	=	
	0.8	2.I	<	
	10.5	17.**	=	
	65	65	</td	
	2.I	3.**	=	
0.3		0.3***	0.26***	
100			I2	
0.5			20-40	
0.1 - 0.3			IO	
0.2 - 0.5			O(I)	
6 CL Limit 2 10 ⁻¹³			< I0 ⁻¹¹	
	"Go Measured 4.5 - 5.0 0.15 4.5 - 9.0 >40 0.1 0.1 0.1 0.1 0.1 0.1 0.1	"Goal " Measured Simulated $4.5 - 5.0$ 0.15 0.15 0.1 $4.5 - 9.0$ 0.1 >40 0.1 0.1 0.8 0.1 0.8 0.1 0.5 0.3 100 0.5 0.1 - 0.3 $0.2 - 0.5$ 0.2 - 0.5	"Goal " Perspectives Measured Simulated Measured 2007 $4.5 = 5.0$ 6.5 0.15 0.27^* $4.5 = 9.0$ 15 >40 >40 0.1 0.12^* 0.1 0.12^* 0.1 0.12^* 0.1 0.12^* 0.5 $17.^{**}$ 0.5 65 2.1 $3.^{**}$ 0.3 0.3^{***} 0.05 $0.1 = 0.3$ $0.1 = 0.3$ $0.2 = 0.5$	

** Very pessimistic

*** The muon rate is optimized to improve the limit

Perspective

- We had an engineering run in 2007 and a second engineering and calibration run between April and August 2008;
- We started the physics data taking on 9/12;
 the detector is getting more and more in its optimal shape
- We expect first results in 2009
 - use the beginning of 2009 to deal with few upgrades
- We are confident to reach a sensitivity of few $\times 10^{-13}$ in $\mu \rightarrow e\gamma$ BR in 3 years of acquisition time.

A 2008 candidate event

• A good hint for this year!

Thanks