

Photon Detector

ICEPP, Univ. of Tokyo Satoshi Mihara

Satoshi Mihara for the $\mu \rightarrow e\gamma$ collaboration, muegamma review at PSI, Jan 2003

- Large Prototype R&D
- Refrigeration and Purification → Haruyama-san
- Final Detector Design (simulation)
 - Segmentation by PMT layers
 - Segmentation by reflectors

- Maintenance work in Summer
- New analysis of alpha
- Electron beam test at KSR in Uji, Kyoto
- Near future plan

Maintenance in Summer

- Very long term operation in May-July for purification test.
- Acrylic plates replaced with Teflon plates
- Installation of
 - PMTs
 - heat exchanger for cooling returned gas with cold gas
 - Nitrogen trap

Alpha events in liquid angular d<u>ependence</u>

- Angular dependence
 - Reflection on the PMT window
 - Absorption by the window

Fresnel reflection(no polarization)

abs $(\cos(\theta_1) - \cos(\theta_2)) < 0.05$ distance = d2 - d1 ratio = $(Q_2/MC_2) / (Q_1/MC_1)$

Absorption length	Confidence level
>1 m	99.7 %
>3 m	86.9 %
>5 m	78.7 %
>10 m	70.8 %

- Performed in Dec. 2002
- First time to operate the detector semi-remotely
 - We realized that
 - We need more mental exercise.
 - We need more remote controls.
 - Diaphragm pump control, circulation flow control...
- Investigation of the detector response to electrons
 - Gamma vs. Electron
 - Similar but not exactly same
- Getting information on the timing resolution of the detector
 - Electron arrival time can be easily determined with plastic scintillation counters.
 - $\sigma_{\gamma}^2 = \sigma_{electron}^2 + \sigma_{depth}^2$

Detector response to electron and gamma

- Energy deposit distribution
 - Electron
 - gamma

Due to electron Energy loss (15MeV) in material in front of xenon

Detector response to Electron and Gamma

Electron deposit energy close to the PMTs, while gamma does after the first interaction.

- Slewing correction to each PMT
- Select events 20000 < Npe <35000

Analysis 1 (intrinsic)

•Divide the PMTs into left and right groups.

•Calculate the mean arrival time in each group and compare the difference.

•No need to care of the start timing resolution.

Analysis 2

•Compare the arrival time with the start counter

•Contains the start counter timing resolution

•Contains electron timing jitter in the material

Preliminary results(2)

Absorption Length Estimation using Electron Data?

- $\lambda abs = inf cm, \ \lambda_{Ray} = 40 cm, \ 100 cm$
- Reflection on the PMT window:
 - Fresnel reflection formula

$$- n_{xenon} = 1.57 n_{silica} = 1.49$$

• No absorption effect in the PMT window

e

Satoshi Mihara for the $\mu \rightarrow e\gamma$ collaboration, muegamma review at PSI, Jan 2003

Future Plan of LP R&D

- Nuclear Emission gamma @University of Tsukuba
 - Preliminary test using a 5inch NaI crystal on 17,18/Feb
 - ${}^{7}\text{Li}(p, \gamma){}^{8}\text{Be Ep}=440\text{keV}, \sigma=\sim5\text{mb}, \text{E}\gamma=17.64\text{MeV}, \Gamma_{0}=16.7\text{eV}$
 - ¹¹B(p, γ)¹²C Ep=7.2 MeV, σ=120µb, Eγ=22.6MeV, Γ₀=2500eV
 1.26um 100 nA →1kHz reaction rate
 - ${}^{9}\text{Be}({}^{3}\text{He}, \gamma){}^{12}\text{C}$ E_{he} =6.51MeV, σ =1.5 μ b, E γ =31.16MeV, Γ_{0} =2.2MeV
- Inverse Compton gamma @TERAS
 - Vacuum problem in wave guides
 - One month for full recovery
 - Next beam time will be after March
- $\pi^0 \rightarrow \gamma \gamma$ from $\pi^- p \rightarrow n \pi^0 @PSI$
 - Beam time in autumn requested

• Pulse tube refrigerator

Liquid phase purification

Pulse Tube Refrigerator

- Coaxial
 - COP 3%
 - 2.2/4.8 kW Compressor
 - 2.2kHz operation

Coax cooling power

- U-shape
 - COP 3%
 - Not too much improvement
 - R&D is going on for better performance

Pulse Tube Refrigerator

- 1. Coaxial -Highly reliable by LP experience Coax. Q(W)at~160K vs Comp input -Enough cooling power 6.5kW Compressor 200 Cooling power (W) 150 **Final Detector** heat load 100 50 0 2. **U-shape** 10 0 2 6 8 Δ -Not too much improvement Compressor power (kW) -Still under R&D for large power
- Fabricate two coaxial pulse tube refrigerator
 One for main cryostat, one for spare or for storage dewar

1. Commercially available

-Barber-Nichols Inc. centrifugal pump -100L/h, ~0.1Mpa -applied to 9000L Kr calorimeter at CERN (1000L/h. 0.2MPa)

2. Hand made pump in Japan under R&D -centrifugal pump -using immersible DC motor (contamination?) - 10-50L/h, ~0.1MPa

Purification Scheme

• Segmentation - by PMT layers

- by reflectors
- QE dependence, Shape → Signorelli-san

<u>Segmentation by PMT layers</u>

- 6 layers of PMTs inserted at –60, 0, and 60 degrees
 - PMTs are placed on all walls **with maximum density** to keep the homogeneity same in both segmented and non-segmented cases.
 - Resolution is estimated by using simple Qsum
- We can observe more pe in case of short λ_{abs}
 - $\lambda_{abs} = 1m$: resolution 15.4% \rightarrow 11%
- We loose efficiency due to the dead volume occupied by inserted layers of PMTs in any case.
- In case of long λ_{abs} , energy leakage in the PMT layers cause deterioration of resolution in addition to the efficiency loss.

λabs	non-segmented	segmented	Eff loss(relative)
1m	15.4%	9.7%	11%
5m	3.7%	3.7%	28%
Inf m	1.5%	2.0%	44%

24

- Reflector does not help to reduce the flight length of scintillation light.
- Reflection efficiency (< 100%) can cause nonuniformity.

26

Flight length distribution of scintillation light

- Large prototype
 - Electron beam test was performed in Dec 2002.
 - Data analysis is in progress.
 - γ beam tests are scheduled in 2003
- Refrigerator
 - Co-axial
 - Highly reliable in LP experience.
 - Performance test with a 6.5kW compressor
 - U-shape
 - Not too much improvement
 - R&D is still ongoing for higher power
- Liquid Phase Purification
 - Low temperature liquid pump
- Final Detector
 - Segmentation by PMT layers and reflectors.
 - QE dependence and detector shape
 - Cryostat design is ready for construction.

