μ+→e+γ探索実験用液体 Xe カロリメータの 40 MeV γ線を用いた性能評価

小曽根 健嗣 (東京大学 素粒子物理国際研究センター)

- $\mu \rightarrow e \gamma$ 探索実験
- 液体 Xe カロリメータ
- 産総研における予備実験
- 今後の予定

日本物理学会 2001年秋季大会 @ 沖縄国際大学

Collaboration

● 東大素粒子物理国際研究センター
<u>小曽根健嗣</u> , 浅井祥仁, 石田卓也, 大谷航, 佐伯学行, 西口創, 真下哲郎, 三橋利也,
三原智,森俊則,山下了
● 東大理学部
折戸周治
● 早大理工総研
岡田宏之,菊池順,澤田龍,鈴木聡,寺沢和洋,道家忠義,山下雅樹,吉村剛史
● KEK 素核研
杉本康博,春山富義,真木晶弘,八島純,山本明,吉村浩司
● 名大理学部
增田公明
● 阪大理学部
久野良孝

PSI (Swiss) INFN-Pisa (Italy)

S.Ritt 他

D. Niccolo, G.Signorelli 他

BINP-Novosibirsk (Russia)

A.A.Grebenuk, D.Grigoriev, I.Ioudine 他

日本物理学会 2001年秋季大会 @ 沖縄国際大学

Physics Motivation

<u>大型加速器実験に先駆けてSUSYの検証が可能。(2003年開始予定)</u>

Signal and Backgrounds

- μ beam stopped on the target; 10⁸/sec
 - $E_e = 52.8 \text{ MeV}, E_{\gamma} = 52.8 \text{ MeV}$
 - $\theta_{\gamma e^+} = 180^{\circ}$ Back to back, in time
- Main background sources

 Radiative µ⁺ decay
 Accidental overlap
 NOT back to back
 And NOT in time
 Reduced down to 10⁻¹⁵ level

E_e: 0.3%, E_{γ}: 0.6%, $\theta_{e\gamma}$: 5.1mrad, t_{e γ}: 64psec

COBRA Magnet

日本物理学会 2001年秋季大会 @ 沖縄国際大学

液体Xe カロリメータ

日本物理学会 2001年秋季大会 @ 沖縄国際大学

HAMAMATSU R6041Q の特長 真空紫外光を通す石英ウィンドウ Q. E. 10% (Typ.) - 100 度で安定動作 可能C 3 atm Gain 10⁶ (1kV 印加時) メタルチャンネル・ダイノード 可能な限り低物質量化してある

日本物理学会 2001年秋季大会 @ 沖縄国際大学

Large Prototype

日本物理学会 2001年秋季大会 @ 沖縄国際大学

ア	6	γ 入射面の低	物質量	化	
ル	U U	Conversion		X ₀ (cm)	厚さ
······································	S N		液体Xe	2.87	
	Ŧ	T Ze S	G10	19.4	0∼0.15 X₀
ノド	カム		アクリル	34.4	0.009∼0.04 X ₀
	١	<u>最大 0.22 X</u> 0	RTV	数十	$0 \sim 10^{-2} X_0$

日本物理学会 2001年秋季大会 @ 沖縄国際大学

Mini – Kamiokande

- Super Kamiokande (こっちの方がもちろんでかい!)

37.2 cm

日本物理学会 2001年秋季大会 @ 沖縄国際大学

日本物理学会 2001年秋季大会 @ 沖縄国際大学

2 倍波モード(20 MeV)

日本物理学会 2001年秋季大会 @ 沖縄国際大学

パルス管冷凍機

 70W@165K (圧縮機2.2 kW)で運転
 キセノン液化後約100時間の安定動作を確認 (キセノンの液化・回収には液体窒素を使用)

PMTの発熱(18W)、cableでの熱流入(約10W)が支配的。

本実験ではPMT数が4倍になるのでtotal で160Wにのぼる。

250W級冷凍機×2で液体キセノンを安定に維持

かつ

キセノンの液化・回収にも使えるようにする。

日本物理学会 2001年秋季大会 @ 沖縄国際大学 23/Sep/2001 K. Ozone

今回の実験の意義 -予備実験-

性能評価方法

●位置・時間分解能については、検出器を二分し、 それぞれで得られる位置・タイミングの差を分解能とする。

日本物理学会 2001年秋季大会 @ 沖縄国際大学

GEANT3 によるM.C. simulation

位置分解能: δx, δy ~ 4mm, δz ~ 16mm FWHM エネルギー分解能: 1.4% FWHM

日本物理学会 2001年秋季大会 @ 沖縄国際大学

LED による PMT の gain 較正

●検出器内部8ヶ所に設けた
 LEDを光らせgainを算出。

●gain は10⁶に設定

●HV調整とLEDによるdata収集を 繰り返しgainのばらつきを1%以 内に抑える。

日本物理学会 2001年秋季大会 @ 沖縄国際大学

Gain 較正が正しく行われず、gain の高い玉がADCのamp を破壊。それをきっかけに雨後の筍の如く次々にADCが発狂。

位置分解能

 ●gain 較正及びADCに異常のない玉は10本
 ●それらを2つのグループに分け、それぞれの光量 重心を求める。その差を位置分解能とする。

時間分解能

ADCの値を用いてTime Walk補正が出来ないため 光量の少ないevent が tail を引く。

日本物理学会 2001年秋季大会 @ 沖縄国際大学

予備実験を終えて

●冷凍機の安定した動作が検証できた。 ●DAQおよびトリガーは期待通り動いた。 ●ADCに対する保護回路が必要。 (例えばbuffer amp. や attenuator や divider を入力前に設ける) ●gain 較正を正しく行えばADCは暴走しない。 ●十分な分解能評価はできなかった。 ●同じ過ちを2度してはいけない。次は成功します。

今後の予定

10月中旬より産総研にてビームテスト開始
詳しくは...

http://meg.icepp.s.u-tokyo.ac.jp

GEANT3 によるM.C. simulation (old data)

- Signal is distributed over many PMTs in most cases
- Weighted mean of PMTs on the front face
 → δx ~ 4mm FWHM
- Broadness of distribution $\rightarrow \delta z \sim 16 \text{mm FWHM}$
- Timing resolution $\rightarrow \delta t \sim 100 \text{ps FWHM}$
- Energy resolution
 ~ 1.4% FWHM
 depends on light
 attenuation in LXe

日本物理学会 2001年秋季大会 @ 沖縄国際大学