

東京大学 三橋利也

東大素セ,東大理^A,早大理工総研^B,高工研^C,阪大^D PSI^E, INFN-Pisa^F, BINP-Novosibirsk^G,産総研^H

大谷航,小曽根健嗣,折戸周治^A,菊池順^B,久野良孝^D,澤田龍^B,鈴木 聡^B, 寺沢和洋^B,道家忠義^B,西口創、春山富義^c,真木晶弘^c,真下哲郎,三橋利也,三原智, 森俊則,八島純^c,山下了、山下雅樹^B,吉村浩司^c,吉村剛史^B,大垣英明^H,豊川弘之^H A.A.Grebenuk^G, D.Grigoriev^G, I.Ioudine^G, D.Nicolo^F, S.Ritt^E, G.Signorelli^F

前回の学会のまとめ

2月に行われたBeam test では、分解能が予想より悪い。

液体Xe中のシンチレーション光の吸収が分解能の低下 を引き起こしている。

今回のあらすじ

Introduction _MEG実験について

分解能が悪かったのは吸収長が非常に短かった(~7cm)ためである。

純化後、吸収長~100cmが達成された。 このとき期待される分解能について。

MEG experiment

目的: μ ⁺→e⁺γ 崩壊の探索(そして発見) Br~10⁻¹⁴のsensitivityを目指す。 Physics motivation: $*\mu \rightarrow e\gamma$ はLepton Flavor Violation過程。charged leptonでのLFVは未観測。 *SUSY-GUTは一般に、実験的に探索可能な $\mu \rightarrow e\gamma$ 分岐 比(Br=10-11~10-13)を予言。 *観測できればSUSYの強力な証拠。 • $\mu^+ \rightarrow e^+ \gamma$ signal: very simple **e**⁺ Background: 52.8MeV 52.8MeV Prompt background: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_{\mu\gamma}$ ✓ Accidental overlap: $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu + \gamma$ from e^+e^- 対消滅 etc.

実験場所と時期: PSI(スイス)、2003-4年開始予定

MEG detector

<u>γ detection</u> Liquid Xe detector PMT:800本 Liquid Xe:~800L <u>e+ detection</u> COBRA Spectrometer ·COBRA Magnet ·Drift Chamber ·Timing Counter

•Detector requirements: エネルギー、角度、時間ともに優れ た分解能が必要。 Br~10⁻¹⁴を達成するには、 $\Delta E \gamma = 1.4\%, \Delta Ee = 0.7\%,$ $\Delta \theta e \gamma = 12mrad, \Delta t = 150ps(FWHM)$

Liquid Xe γ calorimeter

液体Xe中にPMTを浸しXeからの シンチレーション光(~175nm)を 捕らえることによってエネルギー、 位置、タイミングを測る。

液体Xeの特長

- High Light Yield
- Wph = 24 eV (~75% of NaI)
- Fast Decay
 - τ (recombi.) = 45 nsec
- ➡ pile up の減少。
- Homogeneous

結晶のシンチレータと異なり均質 で大型の検出器の製作が容易。

液体Xeの主な性質

質量数	131.29
密度	3.0 g/cm ³
沸点、融点	165 K, 161 K
Radiation length	2.77 cm

Large prototype

Beam test @ TERAS


```
レーザー光を電子で散乱して、40MeVの γ線をつくる
```


Analysis

•Energy: Compton edge からの広がりで評価。 event selection (energy, conversion depth)

入射Comptonのspectrum にgaussian をconvolute

•Position:光量重心の方法。

1.event selection (energy, conversion depth)

2.光量の分布のpeakを求める。

3.解析に使うPMTの範囲を決める。

4. 手順2.3を繰り返し、得られた光量の分布をfitする。

前回(2月)のBeam testの結果

- ・ 観測された光量が少ない: シミュレーションの 1/9
- first conversionが深いevent
 ほど光量が少ない

前回のBeam test時の吸収長の見積もり

エネルギー分解能に対して、吸収が与える影響が圧倒的に大きい

beam test で得られた△Eから吸収長を見積もる

40MeVの単色 γ 線入射時の 吸収長とエネルギー分解能

吸収長	ΔE (FWHM)
7cm	35.7%
10cm	21.2%
50cm	4.3%
100cm	1.9%
500cm	1.6%

吸収長~7cm

前回のBeam test時の吸収長の見積もり

位置分解能の解析結果から吸収長を見積もる

MCと比較すると どの入射位置でも 吸収長~7-8cm

Beam testの ΔE, Δxの解析結果 → λabs~7-8cm

宇宙線とα sourceを用いた解析: 前回のbeam test時 λ abs<10cm 詳細は 次のTalk(15aRH8) (吉村@早稲田)

現在の吸収長は・・・

純化方法の詳細は次のTalk(15aRH8)(吉村@早稲田)

エネルギー分解能を決める要因:

吸収、calibration(<2.6%),gainの不安定性(<0.6%),noise(~0.4%)</p>

100cmの吸収長 40MeVの単色γ線MCによると:ΔE~1.9%

全ての要因を加味すると、吸収長>100cmで△E<3.3%

吸収長>100cm時の分解能

位置分解能についても 吸収長が伸びると分解 能の向上が期待できる。

吸収長が100cmのとき Δx~5mm(FWHM) (PMTの中心に入射時)

Large Prototype ではλ**abs>100cm**ならば: <u>ΔE<3.3%, Δx<5mm(PMTの中心に入射時)</u>(FWHM) が期待できる。

分解能向上の方策
 各PMTのQEのcalibration(gasXeを用いる)
 さらに吸収長を長く(純化方法の改良)
 新しいPMT(higher Q.E.)
 エネルギー再構成のアルゴリズム改良

10月にTERASでbeam testを行い、吸収長>100cm
 のときの検出器の性能を評価する。
 時間分解能についても測定を行う。

back-scattered electron
をstart signalにして、時間
分解能の測定する。
electronのtagに成功。

- 新しいµ⁺ → e⁺ γ探索実験のための液体Xeガ ンマ線検出器の開発を行っている。
- 前回のbeam testでは良い分解能が得られな かったが、主な原因は液体キセノン中でのシン チレーション光の吸収である。
- λabs>100cmでのLarge prototypeの分解能 はΔE<3.3%,Δx<5mmと期待される。
- 次のbeam test を10月に行う予定。