Liquid Xe calorimeter beam test for the $\mu \rightarrow e \gamma$ search experiment

μ→eγ崩壊探索実験用液体 Xe カロリメータのγビームテ スト

by Hajime Nishiguchi @ ICEPP , Univ. of Tokyo

西口 創 @ 東大 | C E P F

東大素セ,東大理^A,早大理工総研^B,高工研^C,阪大^D PSI^E, INFN-Pisa^F, BINP-Novosibirsk^G,産総研^H

大谷航,小曽根健嗣,折戸周治^A,菊池順^B,久野良孝^D,澤田龍^B,鈴木 聡^B, 寺沢和洋^B,道家忠義^B,春山富義^C,真木晶弘^C,真下哲郎,三橋利也,三原智, 森俊則,八島純^C,山下雅樹^B,吉村浩司^C,吉村剛史^B,大垣英明^H,豊川弘之^H A.A.Grebenuk^G, D.Grigoriev^G, I.Ioudine^G, D.Niccolo^F, S.Ritt^E, G.Signorelli^F

I. Introduction

- $\mu \rightarrow e \gamma$ search experiment
 - Our plan

II. Liquid Xenon Calorimeter

- Xenon
 - Prototype detector
- **III.** γ beam test
 - Overview
 - Analysis

IV. Summary

➢ Related topics 25pXA-2 (小曽根健嗣, et al.) 25pXA-3 (澤田龍, et al.)

Outline

I. Introduction

 $\mu \rightarrow e \gamma$ search experiment

$\blacksquare \mu \rightarrow e \gamma \text{ decay } ?$

- ' $\mu \rightarrow e \nu \nu$ ' ~ 100% (in SM)
- ' $\mu \rightarrow e \gamma$ ' violates Lepton Flavor Conservation !
- SUSY-GUT models predict $Br(\mu \rightarrow e \gamma)=10^{-11}\sim 10^{-14}$

- •Sensitive to physics beyond the SM !
- •New experiment with a sensitivity of BR~10⁻¹⁴ planned at PSI

I. Introduction

Our plan

JPS meeting Mar. '02 @ Ritsumeikan Univ.

- Sensitivity down to BR~10⁻¹⁴
- Most intense DC muon beam at PSI
- Liquid xenon photon detector
- Positron spectrometer with gradient magnetic field
- Thin superconducting magnet
- Positron tracker and timing counter

• Engineering/physics run will start in 2003

Collaboration

Requirement on the $\boldsymbol{\gamma}$ detector

Very Small Branching Ratio

Good Energy Resolution (<1%)</p>

Good Position Resolution (~2mm)

Good Timing Resolution (~50psec)

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Why Xenon ?

High light yield (75% of Nal(TI))

- Good Resolutions
- Fast Signal
 - > Reduce pileups
- Spatial uniform response
 - No need for segmentation

Properties of Liquid Xenon

Mass number	131.29
Density	3.0 g/cm ³
Boiling and melting points	165 K, 161 K
Energy per scintillation photon	24 eV
Radiation length	2.77 cm
Decay time	4.2 nsec (fast)22 nsec (slow)45 nsec
Scintillation light wave length	(r e eombi.)
Refractive index	1.57

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Final detector plan

Detector design

- •Active volume of Liquid Xe : 800 liter
- Scintillation light is collected by ~ 800 PMTs immersed in Liquid Xenon.
- Effective coverage (front)
 ~ 43.2 %

Design work is running now .

Prototype detectors

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Small prototype detector

•32 PMTs & 2.3 Liter Liquid Xe

•Study performed with RI source 0.3 ~ 2 MeV , and extrapolations from the results implied excellent resolutions for 52.8MeV γ from $\mu \rightarrow e \gamma$

Has to be verified with larger detector for higher energy γ rays

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Large prototype detector

•228 PMTs •125 Liter Liquid Xenon •Beam test for 40 MeV γ

III. γ beam test

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Overview

γ beam test has been performed @ AIST (08/Feb – 01/Mar)

National Institute of Advanced Industrial Science & Technology

40 MeV γ beam obtained from Laser Compton Scattering

Related topic
 26pWK-2 (大垣英明 @ AIST, et al)

Performance test with high energy γ

III. γ beam test

Purpose

- (Energy-, position-, time resolutions)
 - Check of cryogenics
 - and other detector components
 - Check of stability of detector operation

Accelerator trouble,

DAQ using

Cosmic ray

III. γ beam test

Beam test outline

Wait for

temp. rising

AIST

to

KEK

February													
80	09	10	11	12	13	14	15	16	17	18	19	20	21
KEK to AIST	Set Up	evacuating					Pre- cooling Purification Beam and Liquefaction ON				Beam ON		
February							March						
22	23	24	25	26	27	28	01	02	03	04	05	06	07

All detector components have been working successfully during full term of this beam test !! (Refrigerator , LN2 system , DAQ system , HV supply ...)

Beam ON

Xenon

recovery

III. γ beam test

DAQ

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Photon beam is collimated by 2 collimators , and incident center of detector window .

40 MeV γ

Position scan of the detector, vertically & horizontally $\begin{array}{c} y \\ 62mm \\ 62mm$

🔶 incident point

III. γ beam test

Typical event

JPS meeting Mar. '02 @ Ritsumeikan Univ.

Analysis for position measurement

Light distribution @ front wall

III. y beam test

III. γ beam test

Position resolution

Results (preliminary!)

Position resolution ; 2.3 ~ 2.7 mm !!

IV. Summary

- We performed the γ beam test using prototype
 - liquid xenon calorimeter @ AIST (08/Feb.~07/Mar.).
- We could check the all components , Very good !!
- Analyzing now !
- Position resolution estimation (preliminary) : 2-3mm