MEG実験用液体 Xe scintillation detectorの 40MeV 線を用いた性能評価

早稻田大学 吉村剛史

早大理工総研,東大素セ^B,阪大理^C,高工研^D,BINP-Novosibirsk^E,INFN-Pisa^F,PSI^G

岩本敏幸^B,大谷航^B,小曽根健嗣^B,菊池順,久野良孝^C,澤田龍^B,鈴木聡,寺沢和洋, 道家忠義,西口創^B,服部紘二,春山富義^D,久松康子^B,真木晶弘^D,真下哲郎^B,三原智^B, 森俊則^B,八島純^D,山口敦史,山下了^B,山下雅樹,山田秀衛^B,吉村浩司^D, A.A.Grebenuk^E, D.Grigoriev^E, I.Ioudine^E, D.Nicolo^F, S.Ritt^G, G.Signorelli^F Thanks for beam test to 豊川弘之,大垣英明(AIST)

> 2003年9月12日 日本物理学会秋季大会 宮崎ワールドコンベンションセンター・サミット

講演内容

MEG実験について

液体キセノン 線検出器について

線に対するエネルギー分解能・位置分解能 (2003年4月に産総研で行なわれたビームテストの結果)

MEG実験

< µ ⁺ e⁺ + 崩壊の探索 > 標準理論では禁止されているが、SUSY-GUTなどで 観測可能な分岐比(10⁻¹⁴ ~ 10⁻¹²)が予想されている。

µ ⁺ e ⁺ + decay

background

Radiative µ+decay reduce down to 3.7x10⁻¹⁵

Accidental overlap reduce down to

 $(2.2 \sim 3.5) \times 10^{-14}$

µ⁺ e⁺+ 崩壊探索用検出器

Positron 超伝導電磁石 タイミングカウンター ドリフトチャンバー

gamma 液体キセノン 線検出器 (LXe800liter,PMT 1000本)

Energy: 4.0~4.5% (FWHM) Time: 100psec (FWHM)

Position: 9.0 ~ 10.5mm in x,y (FWHM)

16~18mm in z (FWHM)

液体キセノン 線検出器のプロトタイプ

LXe active volume 68.6liter PMT(2inch) 228本

検出器の長期安定性 O.K.
冷凍機やLN2冷却システムのテスト O.K.
シンチレーション光の減衰長の測定 O.K.
PMTの較正法の確立 O.K.
52.8MeV付近の 線に対する検出器の性能評価

TERASでの ビームテスト

Compton Spectrum

- •Electron beam
 - -Energy: 764MeV
 - -Energy spread: 0.48%(sigma)
 - -Divergence: <0.1mrad(sigma)</pre>
 - -Beam size: 1.5 ~ 2mm(sigma)

Laser photon

-Energy: 1.17e-6x4 eV (for 40MeV)

-Energy spread: 2x10-5 (FWHM)

TERASでの ビームテスト

Compton Spectrum

Detector Response Function

(Gaussian with Exponential tail)

$$g(E_{\gamma}) = \left(E_{\gamma} - \frac{E_c}{2}\right)^2 + \frac{E_c^2}{4} \qquad h(E) = \begin{cases} \exp\left(\frac{t}{\sigma^2}\left\{\frac{t}{2} - (E - \mu)\right\}\right), & E \le \mu + t, \\ \exp\left\{\frac{(E - \mu)^2}{-2\sigma^2}\right\}, & E > \mu + t \end{cases}$$

Compton spectrum Detector response function 2つの関数のconvolutionでfitする。

エネルギー分解能の解析法

Convolution of Compton Spectrum response function

$$f(E_{\gamma}) = \int_{-\infty}^{\infty} g(t) h(E_{\gamma} - t) dt$$

イベント選別 D(depth parameter) > 45

エネルギー分解能のD依存性

$$D(\text{Depth parameter}) = \left(\left\langle x_i^2 \right\rangle - \left\langle x_i \right\rangle^2\right) + \left(\left\langle y_i^2 \right\rangle - \left\langle y_i \right\rangle^2\right) \qquad \left\langle x_i \right\rangle \equiv \frac{\sum n_{pe}(i)x(i)}{\sum n_{pe}(i)}$$

Energy resolution for D > 25,35,45,55, • • •,75

エネルギー分解能の入射位置依存性

Ave ~ 1.8%(in)

エネルギー分解能のE 依存性

10,20,40MeVのtypicalなdataをconvolution functionでfitして得られた分解能 Fittingに依る誤差はおよそ20%

52.8MeVでは、2.0%(in sigma)よりもよい分解能が予想される。

位置分解能の解析法

位置分解能の解析結果

- •40MeV
- 1mm collimator

位置分解能の入射位置依存性

まとめ

- ・2003年4月に産業技術総合研究所の電子蓄積リング(TERAS)を 利用して液体キセノン 線検出器のビームテストを行なった。
- ・結果、compton edge(40MeV)の 線に対して エネルギー分解能が約1.8%(in sigma)、 位置分解能は平均で約2.7mm(in sigma)となった。 これらは必要とされる条件を満たしている。
- ・2003年10月にスイスのPSIにてプロトタイプを使った ビームテストを 行なう。
 - (⁻p ⁰n ⁰(28MeV/c)

54.9MeV のmonochromaticな 線を入射)

詳細は次の登壇者12aSJ-2 久松(東大)

時間分解能

40 MeV, incident position(x,y)=(0,0)

解析法: ・PMT128本を使用

- time walk correction
- ・左右 2 つにグループ分けする _t=t₁-t_R

PMT選別:Npe>100のPMTを使用 時間分解能:139psec (in)

・back scatterのelectronをきちんと 測定できなかった。

次回PSIでのビームテストでは、 もう一つの を基準にして評価することが できる。