MEG最初の一年、その展望

東京大学素粒子物理国際研究センター

三原 智

Contents

- Introduction
- MEG Detector
- Sensitivity and background
- Our schedule
- Summary

Introduction

$$\mu \rightarrow e \gamma$$

- Lepton Flavor Violation (LFV) is strictly forbidden in SM
- Neutrino oscillation

 LF is not conserved
 Contribute ∞ (m/m_w)⁴
- Supersymmetry

- Off-diagonal terms in the slepton mass matrix

$$m_{l}^{2} = \begin{pmatrix} m_{11}^{2} & m_{12}^{2} & m_{13}^{2} \\ m_{21}^{2} & m_{22}^{2} & m_{23}^{2} \\ m_{31}^{2} & m_{32}^{2} & m_{33}^{2} \end{pmatrix}$$
 Just below the current limit
Br($\mu \rightarrow \mathbf{e} \gamma$) = **1.2 x 10**⁻¹¹
(MEGA, PRL 83(1999)83

Other LFV search experiments

- $\tau \mu \gamma$, $e\gamma$ – KEK, BELLE – SLAC, BABAR
- μ -e conversion
 J-PARC, PRISM project, PRIME

MEG

μ eγ decay search experiment at Paul
 Scherrer Institut
 Japan, Italy, Switzerland, Russia, USA

Signal and Background

Signal

- Background
 - Radiative μ decay

- $E_{\gamma} = m_{\mu}/2 = 52.8 MeV$
- $E_e = m_{\mu}/2 = 52.8 MeV$
- $\theta = 180^{\circ}$
- Time coincidence

Essentials

- Intense muon beam
 - DC beam is better to reduce accidental pile-up events
- Gamma Detector
 Liquid Xenon Detector
 - Good resolutions
 - Capability of identifying pile-up events
- Positron Detector
 COBRA spectrometer
 - Good resolutions
 - Low amount of material
 - Blind to low energy positrons

PSI Proton Cyclotron

Proton energy: 590MeV Nominal operation current: 1.8mA. Max > 2.0mA possible.

Satoshi MIHARA, ICEPP Univ. of Tokyo, JSPS meeting in Matsuyama

9

MEG Detector

- Liquid xenon photon detector
- COBRA spectrometer Magnet, DC, TC
- All detector waveforms are recorded.

Beam Line

- Length 10.4 m
- Solid angle 150 msr
- Momentum acceptance (FWHM) 10 %
- Momentum resolution (FWHM) 2 %

森田裕一 "MEG実験におけるビームチューニング" 29日午後

Beam Line Commissioning

- 2005 mid July end August
 - Beam Transport Solenoid (BTS) Commissioning
 - Bfield mapping
 - Phase space measurements up to end BTS
- 2005 beg November end December
 - Commissioning BTS with Cryo-plant and Control system
 - BTS automated operation
 - Phase Space measurements inside COBRA
 - Pill scinti + APD on 3-D measuring machine
- End-caps and insertion system
 - Complex design He/Vacuum/N2/Air interface
 - Materials minimized AI & CH2/EVAL (background)

Calibration target installation

Target System

- Various solutions under study
 - Target material
 - Rohacell form/CH2 combination
 - Complete Rohacell
 - CH2 or polystyrene Target + wire frame

COBRA Magnet

- 360A, 1.27T
- 0.197X₀ around the center

COBRA Magnet

- Cooling by using two GMtype refrigerators
 - No need of helium for operation
- Compensation coil to reduce field strength around the

• Field measurement has been completed recently

Design field

Measured field around the xenon detector

Liquid Xenon Detector

- 800~900 liquid xenon
- 846 PMTs immersed in the liquid
- No segmentation
- Why Liquid Xe ?
 - Good resolutions
 - Large light output yield
 - W_{ph}(1MeV e) = 22.4eV
 - Pile-up event rejection
 - Fast response and short decay time
 - $\tau_s = 4.2$ nsec, $\tau_T = 45$ nsec (for electron, no E)

•西村康宏 "MEG実験用光電子増倍管の液体キセノン中におけるLEDを用いた利得解析と現状" 27日午後

Depth Reconstruction

• Broadness of light distribution at the entrance side

shallow

deep

PMT test in LXe

- All PMTs were tested in LXe before installing to the detector
 - Pisa LXe PMT test facility
 - Xenon Detector Large Prototype
- QE, Gain, response linearity
- All information is stored in a database for future use.

Construction Status

- Cryostat Construction in progress in Italy
- Delivery in June
- PMT installation and setup after that
- Ready in September

DC

- Position resolutions (~300µ m) for both r and z.
- Vernier pad readout for z measurement
- Low amount of material
- Need very precise pressure control ~1Pa

TC Assembly

- PMT test completed
- Assembly test started

Electronics

Trigger Electronics

- PCB production finished
- Currently board mounting in progress
- Ready to install in June

Type 2

DAQ/Waveform Digitizer

DRS – Domino Ring Sampler

Waveform Analysis

- Q,T evaluation from waveforms •
- **Pile-up rejection** •
- Waveform fitting is very CPU time • consuming

Fraction:0.3, delay 10nsec

Constant fraction

•内山雄祐

Peak search method

性能評価" 27日午後

How Far Can We Go?

• Expected sensitivity at 90% C.L.

Schedule

- MEG beam time; Apr-Jun, Aug-Dec
- DC/TC run with beam; Sep-
- LXe
 - Setup; -Sep~Oct, Calibration run; ~Nov -
 - Ready in Nov
- DAQ/Trigger; Ready in Jun
- Ready to start DAQ; ~mid Nov

Summary

- MEG starts in 2006
- Detectors are getting ready
- Analysis/online softwares also
- For further information, visit http://meg.icepp.s.u-to

•澤田龍 "汎用データ解析ソフトウェア生成ツールROME&ARGUS" 30日午後