

東大素セ、BINP^A、PSI^B

大谷航、森俊則、山下了、吉岡瑞樹 D.N.Grigoriev^A、P.-R.Kettle^B、S.Ritt^B 他MEG collaborators

日本物理学会 第61回年次大会@愛媛大学 2006年3月29E

CONTENTS 1. MEG Experiment

- 2. Motivation for Beam tuning
- 3. Beam line in the Experimental area
- 4. Beam tuning
- 5. Results & Summary
- 6. Future prospect

MEG Experiment

Motivation for Beam tuning Aim at ~10⁸ stopping μ +/s in a $\sigma x \sim \sigma y \sim 1$ cm spot

Beam tuning is essential for MEG Experiment

PSI (Paul Scherrer Institut) in Switzerland possesses the most intense DC proton accelerator in the world.

The accelerator routinely achieves a 1.1MW DC proton beam of 1.85mA

Purpose

10⁸ muon rate at target point after beam tuning

1st beam injection to target point

No degrader system

The situation is slight different from that of physics run.

Beam line in the Experimental area

Schematic MEG Beam Transport System

BTS (Beam Transport Solenoid)

degrader

COBRA Spectrometer (filled with He) COnstant-Bending-RAdius spectrometer

Compensation coil

COBRA magnet

Timing counter Drift chamber Liquid xenon calorimeter

Beam tuning in BTS

Method to examine tuning

3-D phase space measured in COBRA volume

Filled with He in COBRA

Tools to measure muon rate

APD + scintillater

Results No degrader

 $R \mu = 2 \sigma_x \sigma_y R_{APD} / r_{APD}^2$ = 1.19 × 10⁸ μ +s⁻¹@1.8mA,4cmTarget

Satisfies the requirement (~ $10^8 \mu$ +s⁻¹)

Results

■ Muon rate satisfies the requirement $\sim 10^8 \,\mu^{+}s^{-1}$

Simulation well reconstructs the real measurements

Future prospect

 Solve the problem: 4~5mm beam shifts (of unknown cause)
Measurements with Degrader System

in BTS \rightarrow April 6 – May 10

$\square \text{ MEG Pilot Run} \rightarrow \text{Late 2006}$

Method to tune beam

APD

COBRA is filled with helium

Motion	Deviation	Reproducibility		
R	0.2mm	0.5mm		
φ	0.35mm	0.5mm		
Z*	0.7mm in R 1.5mm in գ	0.5mm in Z		

† measured at radius ~ 30cm

Measured the beam intensity with tuning the beam line

Find out the place with the strongest intensity of the μ +beam by moving APD 3-dimensionally

Injector 2 cyclotron Beam Production

590MeV

72MeV

Cockcroft-Walton Accelerator

<u>28MeV/c</u>

Ring cyclotron

proton
surface muons
beam positrons
Michel positrons

Target M Polycrystalline graphite (thin) **Target E** Polycrystalline graphite (thick)

PiE5 area (Experimental area)

Triplet I, II

 Set of 3-quadrupole magnets
Focusing elements
Producing round spot

Steering magnet + collimator system Placed at double focus

horizontal deflection

Eliminate deflected beampositrons from separator

Method to tune beam

 Build up beam line element-byelement, place detector at foci & optimize element by maximizing normalized µ + rate
Optimization of particle separation — separator, collimators
Optimize range, stopping distribution in target — degrader, target

Low threshold (90mV) High threshold (850mV)

