

#### MEG陽電子スペクトロメータの性能

西口 創 @ 東京大学

他 MEG Collaborations

JPS meeting, 2008 spring Kinki University 2008.03.23-26

#### contents

- Positron Spectrometer
- 🗳 Run 2007
- Performances
- Plan in 2008
- Conclusions

# Requirements for the e<sup>+</sup> Spectrometer

#### Very high counting rate

- the most intense DC muon beam in the world
- muon stopping rate : 3x10<sup>7</sup> muon/sec
- <u>Good momentum/position/timing resolution</u>
- aiming excellent sensitivity
- 0.4-1% momentum resolution, 500µm position resolution for both direction(r,z) and 40 ps timing resolution

#### Low-mass material

- 52.8MeV/c positron can be affected by multiple Coulomb scattering easily
- γ background generation should be suppressed as much as possible



# MEG Positron Spectrometer



H. Nishiguchi et al.,

JPS meeting 2008 spring,

- e<sup>+</sup> spectrometer - 5

#### Drift Chamber Module



H. Nishiguchi et al.,

JPS meeting 2008 spring,

- e<sup>+</sup> spectrometer - 6

### Drift Chamber Module (Assembled)



H. Nishiguchi et al.,

JPS meeting 2008 spring,

- e<sup>+</sup> spectrometer - 7

#### Installed Drift-Chamber System



H. Nishiguchi et al.,

JPS meeting 2008 spring,

#### - e<sup>+</sup> spectrometer - <sup>8</sup>

# **Timing Counter System**

- 2-layers of scintillators
  - Scintillator bars (outer layer)
    - read out by PMTs for timing
  - Scintillator fibres (inner layer)
    - read out with APDs for z-trigger
- Aiming goal
  - $\sigma_T \sim 40$  psec (100 psec FWHM)
  - Achieved at test-beam experiment
- This is Best existing Timing Counter



JPS meeting 2008 spring,

Kinki University, 23-26/Mar./2008

#### Run 2007

#### Purposes

- All Detector Integration / Operation / DAQ
  - Full Intensity Muon Beam (5x10<sup>6</sup> & 3x10<sup>7</sup> muon/sec)
  - Trigger Front-end Elec. DAQ chain
- Conditioning with Final Settings
  - Slow Control System
  - Long Term Monitoring
- Full Set of Calibration
  - Wire Alignment
  - Position Measurement Calibration (Longitudinal/Transverse)
  - XT Calibration
- Performance Evaluation and Offline Analysis
  - Efficiency, Resolution

### Slow Control & Long Term Monitoring



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## Problems

- Several Drift Chambers have problems
  - Discharge
  - Disconnection
- Exposed HV point on the chamber board in pure Helium
- Some connectors of feedthrough was disconnected at the patch panel due to lack of latch
- We decided to leave it since the first priority was to keep the run-schedule.



- Detector performances are partially degraded.
- Problems are being repaired now during winter shutdown 2007-2008.

# Wire Alignment



- Position of DC modules are surveyed
- Wire relative alignment done by Cosmic ray
- ~ 270 um wire displacement
- 3 times iteration, relative shift < 100 um





JPS meeting 2008 spring,

#### Cathode Pads with Vernier Pattern



- two big advantages, position resolution improvement and readout channel decrease
- rough estimation by charge division method (~1cm)
- using the ratio of induced charge on each 4 strips, z coordinate with 500µm accuracy is available



## Z Coordinate Calibration

- Z Coordinate Calibration = Preamp. Gain Calibration
- Vernier pattern can be very precise position reference
- By using "phase" of vernier period, anode and cathode calibration can be done each other iteratively.



H. Nishiguchi et al.,

JPS meeting 2008 spring,

#### Z Coordinate Calibration



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## Time-to-Distance Calibration



- Simple Cell Configuration / Small Lorentz Angle
- Angular / B-field dependence should be maintained

#### **Time-to-Distance** Calibration



H. Nishiguchi et al.,

JPS meeting 2008 spring,

#### Performances

- Intrinsic Performances
  - DC Single Hit Efficiency
  - Spacial Resolutions (R, Z)
  - TC Timing Resolution
- Spectrometer Performances
  - Reconstruction Efficiency
  - Momentum Resolution



# Spacial Resolution (Transverse)

- Residual "reconstruct fit"
- **σ**<sub>r</sub>=170~350 um (230 ave.)



H. Nishiguchi et al.,

JPS meeting 2008 spring,

# Spacial Resolution (Longitudinal)

- Residual "reconstruct fit"
- σ<sub>z</sub>=600~1000 um (810 ave.)
- The intrinsic resolution indicated by the thickness of the vernier-circle
- The residual distribution is not biased by the reconstruction algorithm



JPS meeting 2008 spring,

# **Timing Resolution**

- TC intrinsic timing resolution
- Difference "Bar1 Bar2"
- Double Threshold Discriminator
  - **σ**<sub>t</sub> = 52 ps
- PMT waveform
  - $\sigma_{t} = 62 \text{ ps}$



H. Nishiguchi et al.,

JPS meeting 2008 spring,



- Performances - 23

## DC event display (3x10<sup>7</sup> /sec muon intensity, normal mode)



H. Nishiguchi et al.,

JPS meeting 2008 spring,

- Performances - 24

# Track Finding



H. Nishiguchi et al.,

JPS meeting 2008 spring,

- Performances - 25

### Track Finding → Track Fitting



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## Momentum Resolution

Reconstructed Spectrum (Radiative Trig.)



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## **Reconstruction Performances**

- For the RUN2007, we have a certain number of missing channels and one blank chamber, and hence the track finding/fitting efficiency is limited.
- Momentum Resolution is also degraded due to bad condition.
- All the deterioration is reproduce by "degraded MC" and confirmed.

|                | track finding eff. | good tracking eff. | mom. resolution |
|----------------|--------------------|--------------------|-----------------|
| Run 2007       | 85%                | 65.2%              | 0.9%            |
| MC (full spec) | 99%                | 97.5%              | 0.4-0.6%        |

## Plan in 2008

- Several bad DCs are being repaired now (winter shutdown)
  - Better molding HV-line to avoid discharges
  - Better Connectors at feed-through of patch panel to avoid defluxion
- mid. April
  - Installation
  - Wire Alignment Run with Cosmic-Ray Trigger
- May June
  - Conditioning with Low / High Rate Muon Beam
  - Calibration with Michel e<sup>+</sup> Trigger
- July -
  - Physics Run until end of FY2008

# Conclusions

- MEG Spectrometer Construction / Installation / Setup, Completed 2007
- Engineering Run was carried out in Sep.-Dec. 2007
  - Conditioning with Full Muon-Beam Intensity / COBRA B-field
  - Long Term Stability is OK
  - DAQ, Trigger electronics Integration / Setup / Data Taken
  - All Survey Alignment Calibration chain was performed and established
- Detector Performances are Confirmed
  - DC and TC intrinsic resolutions are evaluated
    - $\sigma_r = 170 \sim 350 \text{ um} / \sigma_z = 600 \sim 1000 \text{ um for DC}$
    - $\sigma_t = 52 \text{ ps for TC}$
- Spectrometer Performances are Confirmed
  - 480 keV of momentum resolution @ 52.8 MeV

## backup slides

# MEG Experiment

- Search experiment for " $\mu \rightarrow e\gamma$ "
  - " $\mu \rightarrow e\nu\nu$ " (Michel decay) ~ 100% in SM
  - SUSY-GUT models predict higher branching ratio  $Br(\mu \rightarrow e\gamma) = 10^{-11} \sim 10^{-15}$
  - $\mu \rightarrow e\gamma$  decay is the most sensitive, exploring GUT/seesaw via SUSY
  - New experiment, MEG, with a sensitivity of Br = 10<sup>-13</sup> is being carried out at Paul Scherrer Institut (PSI) in Switzerland
- Detector concept
  - The most intense DC muon beam @ PSI
  - Liquid xenon γ detector; see 23pZJ5-8
  - Positron spectrometer with gradient magnetic field
  - "Light" drift chamber system and highaccuracy timing measuring counter



#### - MEG detector -

# $\mu \rightarrow e\gamma$ Signal and Background

Signal



- $E_e = E_Y = m_{\mu}/2 = 52.8 MeV$
- θ = 180deg.
- time coincidence

#### Clear 2-body kinematics

use  ${}_{\mu^{+}}$  to avoid capture inside stopping target Background dominated by Accidental overlap

- lower muon beam rate is better
- DC muon beam is the best

- Background
  - radiative muon decay



accidental overlap



### **COnstant Bending RAdius Solenoid**



low energy e+ quickly swept out



constant bending radius independent of emission angles

JPS meeting 2008 spring,

#### **COnstant Bending RAdius Solenoid**



H. Nishiguchi et al.,

JPS meeting 2008 spring,

# Drift Chamber Design





H. Nishiguchi et al.,

JPS meeting 2008 spring,

#### Drift Chamber System



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## DC characteristics Simulation (Garfiled)



H. Nishiguchi et al.,

JPS meeting 2008 spring,

# DC Output Waveform (Domino Ring Sampler)



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## Pressure Equalization System



H. Nishiguchi et al.,

JPS meeting 2008 spring,

## Hit Rate Analysis, Comparison with MC



H. Nishiguchi et al.,

JPS meeting 2008 spring,

# Momentum Resolution Estimation

• End-point is fitted to the convolution of "theoretical response function" and "Gaussian", with three free parameters; " $E_{edge}$ ", " $\sigma_{p}$ " and "Normalization"



JPS meeting 2008 spring,

#### Vertex and Angular Resolutions



H. Nishiguchi et al.,

JPS meeting 2008 spring,