

MEG液体キセノン検出器の性能とµ粒子崩壊事象の測定

東大素粒子センター 澤田 龍 他 MEG コラボレーション

2008年3月23日

日本物理学会第63回年次大会

近畿大学大学本部キャンパス

- Muon data in 2007
- Toward physics analysis
- Prospect of 2008

JPS 63rd meeting, 23/Mar/2008, Kinki university, R.Sawada

- Collected ~ $630k \mu \rightarrow e\gamma$ trigger, in 29 hours in real time.
- About 2×10¹² muon stops on the target, during live time of trigger. (acceptance and efficiency is not taken into account.)
- Rates in agreement with expectations

•	Trigger 0 : ~ 4 Hz (@ 40 MeV threshold)	μ → eγ trigger
•	1 : ~ 6 Hz (@ 35 MeV threshold)	loose energy
•	2 : ~ 20 Hz (only up/down e+ γ correlation)	loose angle
•	3 : ~ 10 Hz (DT = 20 ns)	loose time
•	4 : ~ (no e-g correlation, $DT = 20 \text{ ns}$)	radiative decay
•	5 : ~ (no e-g correlation, $DT = 40 \text{ ns}$)	radiative decay, wide time

Trigger efficiency

Trigger efficiency can be obtained by comparing event rate of $\mu \rightarrow e\gamma$ trigger and loose condition triggers.

Example:

Event rate comparison with various gamma energy thresholds

** this plot was made from calorimeter-self-trigger rus (not in $\mu \rightarrow e\gamma$ runs). Threshold is different from $\mu \rightarrow e\gamma$ runs.

γ-e⁺ opening angle and time distribution

Relative time [nsec]

-0.4

-0.6

-0.8

•

E_{e+} [MeV]

60

Very preliminary

Analysis was done with preliminary reconstructions. No pileup rejection of calorimeter. No positron track selection.

$$E_{\gamma}, E_{e+}, T_{e\gamma}, \theta_{e\gamma}$$

Reconstruction result with preliminary analyses. No background events in 2 sigma region.

3σ region 2σ region

JPS 63rd meeting, 23/Mar/2008, Kinki university, R.Sawada

Maximum likelihood analysis is being prepared

SignalRadiative decayAccidental pileup $L(s, s') = \Pi P(xi) = \Pi(sS(xi) + s'S'(xi) + (N-s-s')B(xi))/N$ LL: likelihood functionxi: observablesN: total number of events in analysis boxs: number of signalss': number of radiative decays(RD)S(xi): probability density function(p.d.f.) of signalS'(xi): p.d.f. of RDD(xi): p.d.f. of accidental background

B(xi) : p.d.f. of accidental background

Points are how to define likelihood function and how to obtain p.d.f.

Signal PDF

JPS 63rd meeting, 23/Mar/2008, Kinki university, R.Sawada

Background PDF

Accidental background

Distribution can be obtained from "off-timing" data.

JPS 63rd meeting, 23/Mar/2008, Kinki university, R.Sawada

- Improvement of electronics
 - New version of waveform digitizer (DRS4), with better linearity and stability.
 - Noise study.
- Better PMT calibration
 - Number of alpha sources will be increased for better estimation of Q.E.
 - LED is modified for better estimation of gain. (Increased light attenuation)
 - More LEDs were installed for better estimation of time offset.
- Xenon purification
 - New purifier will be installed (removes water and oxygen).
 - Number of photoelectrons could be doubled ?

5 months DAQ for physics result in 2008 DRS upgrade is scheduled during DAQ

Prospect of 2008 run

	*MEGA (1999)	MEG 2008 prospects	
Gamma Energy (%)	3.3-5.7	5.0	
Positron Energy (%)	0.93-1.6	.	
Gamma Position (cm)	15.6	9.0	
Positron Angle (mrad)		17	
Gamma Time (nsec)	1.6	0.15	⊕0.25
Positron Time (nsec)		0.12	with DRS2
Acceptance	0.3 %	9%	
Gamma efficiency (%)		>40%	
Positron efficiency (%)		65%	
Muon rate (10 ⁸ /sec)	2.5(Pulse,6-7% duty)	0.3(DC)	
Running Time (week)	20	24	
Single Event Sens(10-13)	23	2.2	
Accidental Rate(10e-13)		1.0	
#Accidental Events	2	0.5	
90% CL Limit(10-13)	120	6.9	

FWHM

1 week is defined to be 4×10^5 sec

*Phys. Rev. Lett. 83, 1521 (1999): Brooks et al.

JPS 63rd meeting, 23/Mar/2008, Kinki university, R.Sawada

- 2007 run
 - All the components of the MEG experiment were constructed.
 - Various kinds of data for studying sub-detectors were taken.
 - Trigger system was developed for $\mu \rightarrow e\gamma$ trigger.
- Present
 - Development of reconstruction and physics analysis are being done in parallel.
 - Improvements of hardware is also being done.
- 2008 run
 - We will be ready to restart data taking in June-July.
 - Hopefully, new limit of $\mu \rightarrow e\gamma$ branching ratio from this year's data.