<u>MEG時間測定</u>

東京大学 内山 雄祐 他 MEGコラボレーション

日本物理学会第63回年次大会@近畿大学 2008年3月23日

<u>Outline</u>

- Significance
- Photon timing
- Positron timing
- Coincidence events
- Prospect
- Summary

Significance of timing measurement

- Background is dominated by accidental overlap
 - Signal : clear 2-body kinematics
 - Two types of backgrounds
 - Radiative decays
 - Accidental overlaps
- Our goal
 - $\Delta T_{e\gamma} = 180 \text{ps} (FWHM)$

	Δ Ee (%)	ΔE_{γ} (%)	$\Delta heta e_{\gamma}(mrad)$	$\Delta te\gamma(ns)$
CrystalBox	8	8	87	1.8
MEGA	1	3.3–5.7	33	1.6
MEG goal	0.8	4.5-5	13	0.18

μ.....

Photon timing measurement

Photon timing reconstruction1:waveform analysis

- Waveform from every PMT are recorded
 - Digitizer developed for MEG (DRS)
 - Sampling speed : 1.6GHz for RUN2007
 - Ability for Identifying pile-up events
- Pickoff timing by waveform fitting
 - Make template waveform by averaging many pulses

Photon timing reconstruction2: Time fit

- Reconstruction (Time fit)
 - Chisquare fitting taking into account
 - Conversion position
 - Reconstruct with light distribution
 - Shower development •
 - Walk effects

 $T_i = T_{pmt,i} - t_{propa} - t_{walk}$ 1/sqrt Npe + additional σΤ, [

- **ToF** subtraction
 - μ decay vertex reconstructed by positron tracking
 - Reconstructed photon conversion point

JPS 63rd meeting/Yusuke

LXe timing resolution

- Pi0 run
- σT_{LXe} = 115ps
- Worse resolution
 - Precise time-offset calibration is necessary
 - Few scintillation photons

Resolution as a function of #p.e.

Consistent with prototype result, if the photoelectron statistics taken into account

Positron timing measurement

23/March/2008

Timing counter

- Two layers of scintillator hodoscope
 - Outer thick bars : timing
 - Inner thin fibers : z measurements (Unfortunately couldn't acquire useful data in 2007)
- σ_{TC} =40ps demonstrated at beam test

Timing counter electronics & waveform analysis

- Double threshold discriminator
 - Allow to pickoff timing at 1p.e. level
 - Minimize time-walk effect
- Record 2 waveform signals
 - Attenuated PMT pulse
 - NIM pulse from the discriminator
- Template fitting of NIM pulse for precise timing.

Low thre. 25mV High thre. 800mV

JPS 63rd meeting/Yusuke UCHIYAMA

Timing counter resolution

- Estimated TC resolution by using adjacent bar hits
- 1bar resolution : $\sigma_{TC1} = 52ps$
 - Improved from RUN2006 (75ps)
 - Introduction of DTD and NIM pulse analysis

DC-TC interconnection

- **ToF** correction
 - Extrapolate Kalman track upto TC
 - Match with TC hit according to the χ^2
 - |dZ| should be <4cm
 - $\sigma_{TOF} = 32 ps$ (MC, preliminary)
- Combine several TC hits
 - 65% signal e⁺ have >2 hits (M \mathfrak{G})
 - Achieve $\sigma_{TC} = 42 ps$ with 2 adjacent hits (MC)

Synchronization of timing measurements

- Clock signal for the time reference over the experiment
- Distributed to every chip and recorded
- Time calibration is done offline
 - Calibrate sampling frequency
 - Synchronize clock phase
- Resolution evaluated by the TC adjacent bar hits over different chips 20MHz clock
 - $\sigma_{clock} = 110 ps$

Bad clock quality

- Clock signal itself is high quality
- Distorted in DRS chip

→will be improved with new version digitizer (DRS4) 23/March/2008 JPS 63rd meeting/Yusuke UCHIYAMA

Synchronization of timing measurements

Calibration with coincident events

- Calibration of photon-positron relative timing
 - Radiative decays
 - Able to evaluate whole reconstruction performance
 - Low rate
 - Require dedicated run (reduce beam rate)
 - Difficult to collect good statistics around signal region
 - Not enough data in 2007

- Calibration of photon-positron relative timing
 - Cosmic rays
 - 2γ from boron target
 - Proton beam from CW accelerator with boron target
 - 11.7MeV emission always associated with 4.4MeV line
 - Able to calibrate with high rate
 - ~10kHz \rightarrow 20Hz
 - efficiency
 - Used for trigger time adjustment

15.96

4.4

¹¹B+p

<u>Summary</u>

- Full reconstruction procedure is performed
- Couldn't achieve required resolution yet
 - The main issues
 - Photon timing (low light yield, offset calibration, reconstruction algorithm)
 - Synchronization b/w different chips (bad clock quality)
 - Some treatments will be performed on both issues in 2008

