

JPS Autumn Meeting, 10-13/Sep./2009, Konan University

contents

- MEG e⁺ Spectrometer
- MEG Drift Chamber
- * Run 2008
 - * Problems
 - * Performances
- Conclusion

MEG e⁺ spectrometer

Requirements for Positron Spectrometer

- * Very high counting rate
 - * the most intense DC muon beam in the world
 - * muon stopping rate : 3x10⁷ muon/sec
- * Good momentum/position/timing resolution
 - aiming excellent sensitivity
 - ~1% momentum resolution, 500µm position resolution for both direction(r,z) and 40 ps timing resolution

* Low-mass material

- 52.8MeV/c positron can be affected by multiple Coulomb scattering easily
- γ background generation should be suppressed as much as possible

Special B-field

new sensitive & light DC

MEG Positron Spectrometer

5

MEG Drift Chamber

Run 2008

Spectrometer in 2008

- * We had the first long term experiment (*physics data taking*) in 2008.
- * Rough Time-line 2008 ;
 - * January May : Drift Chamber Maintenance
 - Repair work for bad cable connection
 - Modification to avoid discharge problem
 - * June July : Installation and Commissioning Run
 - * Michel e⁺ Run was performed for Calibration/Conditioning
 - * August : $\pi^0 \rightarrow \gamma \gamma Run$
 - Spectrometer was in Summer Vacation
 - * September December : MEG Physics Run
 - * Problems : <u>Discharge on DC</u>, Noise on Fibre Counter, *etc*.

Several DCs were inactive...

- <u>Discharge</u> on DC happened frequently during Run2008.
- Discharge problem happened 2007 originally, it was fixed at the beginning of 2008, but slowly happened again.
- Finally, 18 planes were operational, only 12 planes were working with nominal voltage...(HV is applied to each plane individually; 32 planes)

Discharges

- Inside COBRA is filled with pure helium, then DC-outside is exposed in helium atmosphere.
- * HV-tracer-line is partially naked to helium in 2007, then discharged...
- * We made the protection for helium in 2008 maintenance period, but...

2008 Performances

Performance Evaluation

- Positron Spectrometer Performances
 - * Momentum Resolution ; σE_{e^+}
 - * Angular Resolution ; $\sigma \phi_{e}$, $\sigma \theta_{e}$
 - * Vertex Resolution ; σ_x , σ_y
- * Combined Performances (LXe Calorimeter + e⁺ Spectrometer)
 - * Opening Angle Resolution ; $\sigma \theta_{e\gamma}$, $\sigma \phi_{e\gamma}$
 - * Timing Resolution ; $\sigma t_{e\gamma}$
- * Spectrometer Efficiency ; ε_e
- Probability Density Function (PDF)
 - * For the Likelihood Analysis
 - * E_{e^+} , $\theta_{e\gamma}$, $\phi_{e\gamma}$, $t_{e\gamma}$: for Signal, Background, both

Momentum Resolution Estimation

- Momentum-Resolution function is represented by Triple-Gaussian
 - Studied by monoenergetic e⁺ in MC
 - * σ_{core}, σ_{out}, σ_{tail} and their fractions are referred as resolution
- Fitting the kinematical edge of Michel spectrum to the convolution of resolution function and (theoretical) response function

Hajime NISHIGUCHI (KEK)

"MEG2008 Positron Spectrometer"

JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University

Momentum Resolution (Run2008)

Michel Spectrum

- Obtained Resolution
 - * $\sigma E_{core} = 374 \text{ keV}$
 - $frac_{core} = 60\%$
 - * $\sigma E_{out} = 1.06 \text{ MeV}$
 - $frac_{out} = 33\%$
 - * $\sigma E_{tail} = 2.00 \text{ MeV}$
 - * $frac_{tail} = 7\%$
 - * ave. $\sigma E = 714 \text{keV}$

* **σE/E ~ 1.3**%

Angular Resolution (Run2008)

- * Angular resolution is estimated by doubly curling track.
- * Subtracted angular residual of each turn gives intrinsic angular resolution.

(*) *N.B.* Taking the *z*-axis as the beam-axis, θ is defined as the polar angle, while ϕ is the azimuthal angle.

Angular Resolution (Run2008)

- * Angular resolution is estimated by doubly curling track.
- * Subtracted angular residual of each turn gives intrinsic angular resolution.

(*) *N.B.* Taking the *z*-axis as the beam-axis, θ is defined as the polar angle, while ϕ is the azimuthal angle.

Vertex Resolution (Run2008)

- * Vertex (muon decay position) Resolution can be evaluated by two way
 - * (1) Fitting the image of hole / (2) Subtracting the double curing track
 - * Both show consistent results; $\sigma_x \sim 4.5 \text{ mm}$ and $\sigma_y \sim 3.2 \text{ mm}$

Opening Angle Resolution (Run2008)

- * Liquid Xenon Detector knows only the incident position, not angle.
- * Combined Angle Resolution : $\sigma \theta_{e\gamma} = 20.6 \text{ mrad.} / \sigma \phi_{e\gamma} = 13.9 \text{ mrad.}$

Timing Resolution (Run2008)

- Relative Timing (e⁺/γ) in physics data shows Radiative Decay Peak on the accidentals.
 - Positron timing is measured by TC and corrected by track length.
 - Gamma-ray timing is corrected by ToF to the conversion point in LXe.
- Peak width is corrected by small energy dependence
 - * $\sigma t_{e\gamma} = 148 \text{ psec}$

Spectrometer Efficiency (Run2008)

- * Spectrometer Efficiency $\varepsilon_{e^{+}}$ consists of two efficiencies
 - Track Reconstruction *E*_{DC}
 - affected by lack of hit
 - DC-TC matching <a>EDC-TC
 - affected by material between DC-TC
 - * $\boldsymbol{\mathcal{E}}_{e}^{+} = \boldsymbol{\mathcal{E}}_{DC} \times \boldsymbol{\mathcal{E}}_{DC-TC}$
- ε_e⁺ was degrading over physics-run period

400

300

Background PDF (radiative muon decay and accidentals) are obtained by unbiased-trigger data. (Michel Trig. and RMD Trig.)

350 Used by *Physics Analysis*

Hajime NISHIGUCHI (*KEK*)

"MEG2008 Positron Spectrometer"

JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University

250

Summary of Performances Run2008

* Even though we had worse performances than the design value, the performance of Run2008 was evaluated to perform physics analysis.

Items	2008	2009 expectation
Momentum Resolution; σE_{e^+}	~1.3%	~0.9 %
Angular Resolution; $\sigma \theta_{e}$, $\sigma \phi_{e}$	10-18 mrad	10-13 mrad
Timing Resolution; $\sigma t_{e\gamma}$	148 psec	~100 psec
Spectrometer Efficiency; ε_{e^+}	7~24 %	~40% (80% × 50%)

Conclusions

- MEG e⁺ Spectrometer have run the first long-term experiment 2008.
- Unfortunately, several problems happened during the physics run, in particular, <u>HV discharge problem</u>.
- Due to discharge, <u>DC system was operational partially</u>, and thus the * spectrometer performance was limited. **Inefficiency was particularly** severe, *i.e.* statistics was limited.
- Performance is estimated even it is limited, PDF's for Signal and Background are obtained.

- Now, ready to discuss "*Physics Analysis*".
- Spectrometer should be improved.

Next Talk.

backups

Signature and Backgrounds

Signal

- $E_e = E_Y = m_{\mu}/2 = 52.8 MeV$
- θ = 180deg.
- time coincidence

Clear 2-body kinematics

use ${\boldsymbol{\mu}}^+$ to avoid capture inside stopping target Background dominated by Accidental overlap

- lower muon beam rate is better
- DC muon beam is the best

- Background
 - radiative muon decay

accidental overlap

COBRA Solenoid

low energy e⁺ quickly swept out

constant bending radius independent of emission angles

MEG Drift Chamber

Hajime NISHIGUCHI (KEK)

"MEG2008 Positron Spectrometer" JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University

2008 Summary of MEG-DC

Discharge Studies

Hajime NISHIGUCHI (KEK)

"MEG2008 Positron Spectrometer"

JPS-Autumn-Meeting, 10-13/Sep./2009, Konan University