

<u>MEG実験2008</u>

<u>μ</u>⁺→e⁺γ崩壊事象探索解析

日本物理学会第64回年次大会 @立教大学池袋キャンパス 29/March/2009

内山 雄祐 他 MEGコラボレーション

Contents

- Analysis strategy
- Data & Run
- Radiative Decay Analysis
- Background
- Normalization
- Single event sensitivity
- Analysis improvements
- Future prospect

09/03/19

Physics Analysis

Data & Run

Normal physics data taking :

- MEG run w/ 11 mixed trigger : Normal beam, 6.5Hz trig. rate, ~83% livetime
- Daily LED calibration w/ beam ON
- 3/week Full calibration sets
- 1/week 24H RD run

Live time : 3.4×10^6 sec Total 9.1x10¹³ muons

Beam Mode		${f R}_{\mu}$ Measured Rate COBRA at 2mA	R_{stop} Stopping Rate at 2mA (ϵ_{stop} = 0.794)
	"High"	8.4·10 ⁷ μ +s ⁻¹	6.7·10 ⁷ μ ⁺ s ⁻¹
	"Normal"	3.5·10 ⁷ μ+s ⁻¹	~ 2.8·10 ⁷ μ⁺s ⁻¹
	"Ultra-low"	1.5·10 ⁶ μ+s ⁻¹	~ 1.2·10 ⁶ μ ⁺ S ^{−1}
09/03/19		The 64th JPS annual meeting / Yusuke UCHIYAMA	

Signal & Background

• signal

- Back to back
- Mono energetic : Ee=52.8MeV, $E\gamma=52.8MeV$
- Coincidence in time

Background

- Prompt background
 - Radiative muon decay (RD)
 - Small branching ratio
 - Able to suppress with current resolution
- Accidental overlap
 - Will be dominant in our experiment

5

•

Radiative Decay Analysis

RD events is our 2nd signal

- **Quite important** to identify RD events in order to demonstrate the quality of our experiment
- Time calibration with real coincident events
 - Two type of data samples
 - Dedicated RD runs
 - "Ultra low" beam intensity (1.2x10⁶ /s)
 - Low accidental BG
 - Low energy threshold, no back-to-back requirement
 - MEG runs
 - "Normal" beam intensity (2.8x10⁷/s)

09/03/19

RD Search in MEG Runs

- We observed RD peak !
 - Even on higher floor of acci.BG
 - Another & powerful time calibration source
 - T0 is well centered
 - T0 is calibrated using different calibration source
 - Dalitz decay of $\pi 0$
 - Taken in summer π 0 run

Peak width = 114 ± 30 ps (s)

- Show the improvement of time resolution as increase of γ energy
- Close to combined resolution of each detector Xe TC Track $100 \oplus 70 \oplus 50 = 132ps$

We are really sensitive to the $\mu \rightarrow e\gamma$ signal !

09/03/19

RD Events in Dedicated Run

Comparison with expectation

- Use dedicated run (low intensity (factor 25))
- Cleaner sample (better S/N~2.8)

- Eγ spectrum shape is well reproduced by MC
- Angular dependence is in agreement with the expectation

09/03/19

Background Study

We can study accidental background with

- Single trigger events (mixed in MEG data)
- Side-band data

- Obtain distributions for accidental background \rightarrow for likelihood fit
- Estimate number of background in signal region

BG Study with Single Spectra

- Consistency check between side-band and single data
- Background is dominant with accidental overlap

BG Study with Single Spectra

- No unexpected background
 - Pileup effect to be investigated
- Absolute rate within ~20%
 - Uncertainty from Eγ efficiency & energy scale

09/03/19

Normalization

$$Br(\mu \to e_{\gamma}) = \frac{N_{sig}}{N_{\mu}(\Omega/4\pi)\epsilon_{\gamma}\epsilon_{e}\epsilon_{trigger}\epsilon_{sel}}$$

- Use Michel decay as normalization channel
 - Michel samples mixed in normal data taking
 - Count reconstructed high momentum Michel positrons

$$N_{\mu} = \frac{N^{Michel} P^{Michel}}{B^{Michel} \epsilon_{e}^{Michel}}$$

In the branching ratio calculation, Positron efficiency is canceled out to the first order.

$$Br(\mu \to e \gamma) = \frac{N^{sig}}{N_{\mu} \epsilon_{e} \epsilon_{\gamma} \epsilon_{trigger} \epsilon_{sel}}$$

$$\nu \frac{\mu^+}{\overline{\nu}} e^+$$

N^{Miche}I:# of observed Michel events P^{Michel}: Prescale factor of Michel tirgger B^{Michel}: Fraction of Michel decay used to count

Other methods are available. Cross check. Preliminary analyses indicate reasonable agreements

09/03/19

Single Event Sensitivity

- Roughly estimate sensitivity of 2008 data
 - Large uncertainty of normalization
 - Analyses are not finalized yet

Expected S.E.S (for box analysis)

(30~ 50) x 10⁻¹³

Efficiencies		
	2008 provisiona	
Gamma	0.28	
e+	0.12-0.23	
Trigger	~0.8	
Selection	0.9 ³ ×0.95=0.69	

- Worse than expectation
 - (for example 4times from the previous JPS meeting)

!! All numbers are provisional !!

09/03/19

Possible Improvements (2008 Data)

- All numbers in this study are very preliminary ones.
 - Using currently obtained performance.
 - Large uncertainty in many parts
- There is some room to improve
- Efficiencies
 - Gamma :

To achieve good sensitivity with 2008 data, it is very important to recover efficiencies

- Recover fiducial volume (now discard shallow events (35%))
- Unfold and reconstruct pile-up events
- Positron :
 - Optimize selection criteria for tracking
- Resolutions
 - We are quoting here rather conservative resolutions
 - ex) Resolution of T $\!\gamma$ include clock synchronizing error which is not same as that for TC.
 - Gamma position resolution includes the spread due to the collimator edge and target spread
 - $E\gamma$ resolution includes larger pedestal distribution from high rate pi beam
 - Further study of reconstruction algorithms and calibrations

09/03/19

Possible Improvements (2008 Data)

- All numbers in this study are very preliminary ones.
 - Using currently obtained performance.
 - Large uncertainty in many parts
- There is some room to improve
- Efficiencies
 - Gamma :
 - Recover fiducial volume (now discard shallow events (35%))
 - Unfold and reconstruct pile-up events
 - Positron :
 - Optimize selection criteria for tracking
- Resolutions
 - We are quoting here rather conservative relation
 - ex) Resolution of Tγ include clock synchronit that for TC.
 - Gamma position resolution includes the spr and target spread
 - $E\gamma$ resolution includes larger pedestal distribution from high rate pi beam
 - Further study of reconstruction algorithms and calibrations

The 64th JPS annual meeting / Yusuke UCHIYAMA

To achieve good sensitivity with 2008 data, it is very important to recover efficiencies

		2008 provisional	
-	Gamma	> 0.5 x 0.65x0.85	
re	e+	(0.3-0.57) x 0.4	
ni	Trigger	1 x0.99 x 0.8	
or	Selection	0.9 ³ ×0.95=0.69	

Possible Improvements (2008 Data)

•	All numbers in this study are very	(σ)	2008 provisional	
	 Large uncertainty in many parts 	Εγ (%)	<2.3	
•	There is some room to improve	Tγ (ps)	<100	
		g position (mm)	<5	
	Efficiencies	Pe+ (%)	1.5-2.0	
	- Gamma :	Te+ (ps)	<60-90	
	 Recover fiducial volume (now disc Unfold and reconstruct pile-up events 	e⁺ angle (mrad)	9 - 18	
	 Positron : 	μ decay vertex (mm)	3 - 4	
_	Optimize selection criteria for trac	Teγ (ps)	< 150	
	Resolutions			

- We are quoting here rather conservative resolutions
 - ex) Resolution of T $\!\gamma$ include clock synchronizing error which is not same as that for TC.
 - Gamma position resolution includes the spread due to the collimator edge and target spread
 - Eγ resolution includes larger pedestal distribution from high rate pi beam
- Further study of reconstruction algorithms and calibrations

09/03/19

Future Prospect

- Run **2009** will start in September
 - Fix DC problem
 - Optimize run coordination
 - Optimize trigger & DAQ system
 - Introduce new waveform digitizer
 - Perform further LXe purification before the physics run starts

Recover efficiency

Efficiencies

	2008 provisional	2009 provisional prospect
Gamma	>0.5 x 0.65x0.85	>0.5 × 0.9
e+	(0.3-0.57) × 0.4	0.85 x 0.5
Trigger	1 x0.99 x 0.8	>0.99
Selection	0.9 ³ ×0.95=0.69	0.69
DAQ	0.8 × 0.93	> 0.9 × 0.99
Calibration etc.	~0.7	0.9
Running time (week)	11.5	11.5
S.E.S (10 ⁻¹³)	30-50	< 3-5

Our "Goal" of S.E.S $\sim 0.5 \times 10^{-13}$

09/03/19

Resolutions

(σ)	2008 provisional	2009 provisional prospect
Εγ (%)	<2.3	< 1.7
Tγ (ps)	<100	< 80
γ position (mm)	<5	< 5
Pe ⁺ (%)	1.5-2.0	0.7 - 0.8
Te ⁺ (ps)	<60-90	60
e ⁺ angle (mrad)	9 - 18	11
μ decay vertex (mm)	3 - 4	2
Te ⁺ γ (ps)	150	100
Background (10-13)		< 0.6 - 3

Uncertainty coming from γ energy scale

Our "Goal" of BG \sim 0.1-0.3

Summary

- In 2008 run, we successfully took various data samples sufficient to evaluate
 - the detector performance
 - the background level
- Clear observation of the radiative decay events in our physics data
 - Important to demonstrates well that we are really sensitive to the $\mu{\rightarrow}\text{e}\gamma$ events
- We are still blind to the signal events
 - Analyses are progressing intensively in daily base
 - Analysis result should be ready before this year run starts
- This year's run will start in September
 - The year 2009 will mark a significant step forward to the goal of the MEG experiment.
- We need **3 years** to achieve the target sensitivity
 - Continue to run the experiment until the end of 2011

Efficiencies !! All numbers are provisional !!

- Individual components of efficiencies are (being) estimated
 - Large uncertainty. Some of them are likely to be changed
 - Most of them are evaluated with real data

Ω/4π	0.09 (depending on cuts)			
07	0.28	Detection	0.5	
Ŷ		Analysis	0.65 x 0.85	ut x pileur
o ⁺	0.12-0.23	Reconstruction	0.3 – 0.57 Selecti	on criteria
e		DC-TC match	0.4	
		Εγ	>0.99	
trigger	0.8*	Timing	0.99	
		Direction match	~0.8*	
selection	0.69 (=0.93x0.95, only for box analysis)			
Ν _μ	9.13x10 ¹³ µstops			

* Recent study indicates this value is overestimate The 64th JPS annual meeting / Yusuke UCHIYAMA 22

09/03/19

RD Dedicated Run Analysis

- Dedicated run with lower intensity beam (factor 25)
 - 24H / week
 - Total livetime : 4.88x10⁵s
 - $E\gamma$ threshold ~25MeV
- Selection criteria
 - Geometrical cuts, track quality cuts, time and energy cuts
 - Kinematical constraint greatly improve S/N (0.83 \rightarrow 2.8)
- → Clear peak !
 - Found 428 RD events on 152 BG in 2_{g} 5s
- → Peak width : 287 ± 18ps (σ)
 - worse resolution
 - Lower γ energy
 - Suffered from time drift over time
 - Change of light yield, waveform
 - Can be corrected

Likelihood Analysis

- Final analysis will be done with maximum likelihood fitting
- Maximum likelihood analysis
 - P(xi) = (NsigS(xi) + NRDS'(xi) + NBGB(xi)) / N
 - N = Nsig + NRD + NBG
 - L(Nsig, NRD) = $\Pi(P(xi))$
 - Describe detector non-uniformity (position, angle dependence)
 - PDFs for different region
 - Analysis region : $+-5\sigma$

Prompt Background Estimation

- Prompt background (radiative muon decay)
- Branching ratio (B_{RD}) can be calculated from theoretical formula
- Rough estimation of B_{RD} with current resolutions
 - $B_{RD} \sim 5.8 \times 10^{-4} (\delta x)^2 (\delta y) [\delta x/3 + \delta y] (\delta z)^2$

 $= 2.4 \times 10^{-14}$

- Accidental background is dominant background source
 - γ ray measurement is most important

09/03/19

Pileup Identification

- Pileup events become dominant background source as increasing beam intensity
- The detector can identify pileup events by
 - Pattern of the light distribution
 - Time difference of every PMT
 - Waveform

MEG : $\mu \rightarrow e \gamma$ Search Experiment

- Search for Lepton-flavor violating muon decay : $\mu \rightarrow e + \gamma$
 - Clear evidence of new physics beyond the SM
- Expected sensitivity : B.R. $\sim 10^{-13}$
 - Can improve the present limit two orders of magnitude

The 64th JPS annual meeting / Yu