

<u>MEG実験2010 現状と展望</u>

日本物理学会2010年秋季大会 @九州工業大学戸畑キャンパス 2010年9月13日

東京大学 素粒子物理国際研究センター 内山 雄祐

Contents

• 2010 status

- Run schedule
- Detector condition

Update, modification

- DRS timing tune
- Mott scat data
- Neutron generator
- Performance
- Sensitivity 2010
- Further prospects

Already started

- Re-install spectrometer after repair & maintenance work (~1 month delay)
- Positron beam test
- Beam optimization
- MEG RUN 2010- I
- Pi0 calibration run
- MEG RUN 2010-II

Total **117 days** for physics data taking \$\scale{3}\$ x2.7

cf. 43 days in 2009

<u>New things, modifications</u> Beam optimization Replaced 5 Drift Chamber modules with new ones Z-measuring Timing Counter integration Electronics (waveform digitizer) timing tuning New calibration method (feasibility test, mounting) Positron mott scattering —

- Neutron generator for 9 MeV gamma

Beam optimization

- Beam intensity
- Stopping distribution
- Degrader, momentum slit
- Event distribution (asymmetry)
- Optimize S/N
- Originally planed before 2009 run
 - 1^{st} half of 2009 data shows strong asymmetry (200 μ m degrader)
 - Less stopping efficiency (~65% of that with 300 μ m degrader)
 - Higher BG
 - Changed degrader setting during run2009
 - T_{live}^{200} : T_{live}^{300} = 37 : 63
 - N_{stop}^{200} : N_{stop}^{300} = 29 : 71
- This study shows the setting of 2nd half of 2009 was optimal
 - Tuned beam center for this setting
 - Rate was adjusted to $3.6 \times 10^7 \mu/\text{sec}$ at center $\rightarrow R_{\text{stop}} = 2.9 \times 10^7 \mu/\text{sec}$

This year More efficient and less BG beam condition for all period

Yusuke UCHIYAMA

- Drift chamber
 - Replaced 5 modules with new ones
 - 30 layers (out of 32) working at nominal voltage
 - (still) large noise on cathode readout
- Liquid xenon
 - Slightly higher light yield (full (updating best record))
 - A few PMTs becoming dead
 - Continuous decreas of PMT gain
 - Total 7 dead channels
- Timing counter
 - Phi-bars working fine (for this 3 years)
 - Optimization of thresholds for better timing resolution are ongoing
 - Z-fibers just integrated into our DAQ
 - Conditioning, noise study, readout tuning under way
 - Integrating into trigger is under study

- Drift chamber
 - Replaced 5 modules with new ones
 - 30 layers (out of 32) working at nominal voltage
 - (still) large noise on cathode readout

- Drift chamber
 - Replaced 5 modules with new ones
 - 30 layers (out of 32) working at nominal voltage
 - (still) large noise on cathode readout
- Liquid xenon
 - Slightly higher light yield (full (updating best record))
 - A few PMTs becoming dead
 - Continuous PMT gain decrease
 - Total 7 dead channels

13/Sep/2010

Yusuke UCHIYAMA

- Drift chamber
 - Replaced 5 modules with new or
 - 30 lay Two-layer (orthogonal) at
 - (still) Z-fiber
 - Phi-bar
- Liquid xei Online resolution
 - Slight ~5cm → ~2.5cm (up
 - A few PMTs becoming dead
 - Continuous PMT gain decre
 - Total 7 dead channels

- Timing counter
 - Phi-bars working fine (for this 3 years)
 - Optimization of thresholds for better timing resolution are ongoing
 - Z-fibers just integrated into our DAQ
 - Conditioning, noise study, readout tuning under way
 - Integrating into trigger is under study

Electronics Timing Accuracy

- In 2009, we introduced new version of waveform digitizer (DRS4)
 - Low noise, better linearity
 - Sampling frequency is regulated by PLL
 - However, found to have worse timing accuracy
 - <u>2009 timing resolution was largely worsened by the electronics</u>
- Modification during shutdown period
 - Reduce digital noise on acquisition board
 - Optimize PLL regulation circuit to minimize jitter

MEG calibrations

MEG calibrations

New calibration method 1

- Spectrometer calibration with e⁺ Mott scattering
 - Coherent elastic scatter of e+ on light nuclei
 - Precisely known cross-section
 - e⁺ beam
 - High intensity @ PiE5 beamline
 - For MEG, e⁺ are separated and rejected
 - Monochromatic, and momentum tunable
 - Select momentum with low momentum bite (~100keV)
 - **Target** (light nuclei \rightarrow Carbon is best solution)
 - MEG target (thickness of 205μm)
 - Dedicated target
 - Pure CH2 (thickness of 2mm)
 - Mounted inside COBRA magnet

- Calibrate and study

- Momentum resolution → Modification, optimization
- Efficiency and uniformity
 - Cross section & angular distribution well known

13/Sep/2010

Yusuke UCHIYAMA

Analysis underway

MEG

Mounted (May 2010)

13/Sep/2010

New calibration method 2

- 9 MeV gamma from n-Ni reaction
 - Thermal neutron capture on Ni
 - Unique possibility of calibrating LXe with gamma under *beam ON*.
 - Neutron generator as n-source
 - D-D reaction
 - Pulsed operation (better S/N under beam condition)
 - Easy to switch ON/OFF
 - Frequent monitoring (any time)

Installed (June 2010)

2010 Expectations

Expected performance

	2008	2009(preliminary)	2010(preliminary estimate)	
Gamma energy (%)	2.0 (w>2cm)	←	1.5(w>2cm)	
Gamma timing (psec)	80	>67	68	
Gamma position (mm)	5(u,v) / 6(w)	←	←	
Gamma efficiency (%)	63	58	\leftarrow	
Positron momentum (%)	1.6	0.74(core)	0.7	
Positron timing (psec)	<125	<95	\leftarrow	
Positron angle (mrad)	10(φ) / 18 (θ)	7.4(φ,core) / 11.2(θ)	8(φ) / 8(θ)	
Positron efficiency (%)	14	40	40	
e+-g timing (psec)	148	142(core)	120	
Muon decay point (mm)	3.2(R) / 4.5(z)	2.3(R) / 2.8(z)	1.4(R) / 2.5(z)	
Trigger efficiency (%)	66	84	84-94	
DAQ time/Real time (days)	48 / 78	35 / 43	95 / 117	

For detail,

→ 13pSM3 "MEG実験液体キセノン検出器の性能"白雪
→ 13pSM2 "MEG実験用電子スペクトロメータの性能評価"藤井祐樹

Yusuke UCHIYAMA

Expected statistics & sensitivity

3.1-3.5倍の統計(2009比)

18

Summary table

	2008	2009(preliminary)	2010(preliminary estimate)	
Gamma energy (%)	2.0 (w>2cm)	\leftarrow	1.5(w>2cm)	
Gamma timing (psec)	80	>67	68	
Gamma position (mm)	5(u,v) / 6(w)	←	←	
Gamma efficiency (%)	63	58	←	
Positron momentum (%)	1.6	0.74(core)	0.7	
Positron timing (psec)	<125	<95	\leftarrow	
Positron angle (mrad)	10(φ) / 18 (θ)	7.4(φ,core) / 11.2(θ)	8(φ) / 8(θ)	
Positron efficiency (%)	14	40	40	
e+-g timing (psec)	148	142(core)	120	
Muon decay point (mm)	3.2(R) / 4.5(z)	2.3(R) / 2.8(z)	1.4(R) / 2.5(z)	
Trigger efficiency (%)	66	84	84-94	
Stopping muon rate (/sec)	3x10 ⁷ (300μm)	2.8x10 ⁷ (300µm)	2.9x10 ⁷ (300μm)	
DAQ time/Real time (days)	48 / 78	35 / 43	95 / 117	
Sensitivity	1.3x10 ⁻¹¹	6.1x10 ⁻¹²	(2.0-2.2)x10 ⁻¹²	
BR upper limit (obtained)	2.8x10 ⁻¹¹	1.5x10 ⁻¹¹ -		

13/Sep/2010

Further prospects, Discussion

- We will run at least until 2012
 - Another two-year full run.
 - No clear schedule for further years
 - We will clarify the situation (2009 result) by ourselves with long term stable data taking
- Our goal is a sensitivity of a few × 10⁻¹³
- To achieve the goal
 - Gaining statistics is crucial
 - Must reduce BG by improving analysis

Further improvement

- Efficiency and data statistics
 - DAQ and Trigger efficiency by double buffering
 - Current DAQ eff ~ 82%
 - Current TRG eff = 84%
 - \rightarrow 99x95 %
 - Possibility in our system has been considered since this spring
 - Study underway
 - Possibly implemented from next year
 - e⁺ tracking efficiency
 - Even if the full operation of DC, eff is limited to <50% due to <u>detector</u> <u>material</u>.
 - Improvement under consideration
 - Use thinner cables, upto 15% improvement
 - Feasibility and design underway, possibly from 2012
 - Drastic improvement requires major upgrade of detector
- Analysis
 - Gamma energy
 - Positron tracking

Strategy for analysis improvement

- Positron tracking
 - Reduce noise, hardware and software
 - Fine tuning of track fitting algorithm
- Gamma energy
 - Understand LXe optical properties
 - MC
 - Reflection with polarization, etc.
 - Improve QE measurement
 - Detail understand of detector
 - Optimize analysis with MC training
 - Fine calibration
 - Stable and better quality data of pi0 run with BGO
 - Uniformity calibration for high energy gamma
 - Develop more sophisticated reconstruct algorithms
 - Possibility of replacing bad PMTs with new ones (2012?)

Summary

- 8月頭から既に物理ランを再開
 - 3年目、スムーズに。
 - 色々最適化を進めている。
- 新しいキャリブレーション方法を試行
- 期待される実験感度の見積り
 - ~3倍の統計を貯められる。(2009比)
 - 期待感度:~2 x 10⁻¹²
- 今後の長期ランで2009結果の状況をはっきりさせることができる
 - 最低3年走る。
 - 目標感度に到達するには、統計を如何に稼ぐかが非常に重要。
 - BGを落とすために解析を鋭意改善

Improve pi0 data with BGO

- Use BGO instead of Nal
 - Higher efficiency, better resolution(位置,エネルギ-
 - First test done with 16 crystals on Sep.2010

	LXe	LAr	NaI(Tl)	CsI(Tl)	BGO	LSO(Ce)	$PbWO_4$
Density (g/cm ³)	2.98	1.40	3.67	4.51	7.13	7.40	8.3
Radiation length (cm)	2.77	14	2.59	1.86	1.12	1.14	0.89
Mollier radius (cm)	4.2	7.2	4.13	3.57	2.23	2.07	2.00
Decay time (ns)	45	1620	230	1300	300	40	$30/10^{1}$
Emission peak (nm)	178	127	410	560	480	420	$425/420^{1}$
Relative output	75	90	100	165	21	83	$0.083/0.29^{1}$

¹slow/fast component

Yusuke UCHIYAMA

Relative alignment with CR

- Alignment of detectors
 - Optical survey
 - Photogrametric survey
 - Farogauge
 - Michel positron for spectrometer
 - Relative alignment b/w Lxe and spectrometer
 - Took CR w/o magnetic field (May 2010)
 - Reduce uncertainty of relative angle.

