

MEG実験2009 陽電子スペクトロメータの性能評価

東京大学 藤井 祐樹 他 MEG コラボレーション 2010年3月23日 日本物理学会 第65回年次大会 岡山大学津島キャンパス

JPS meeting @ Okayama University

contents

- Run 2009
 - 測定原理
 - 性能評価
 - Efficiency
 - Resolution
 - Noise
- Future prospects
- Summary

測定原理(1)

MEG drift chamber

DRS4 waveform digitizer

- Wave form analysis
 - MEG実験ではすべ てのdrift chamber cellでwaveform digitizer(DRS4)によっ てデータ収集を行っ ている.
 - Wave formから
 - 1. Charge
 - 2. Drift time

の情報を得ることが できる

測定原理(2)

Detector performance

- Efficiency
 - Spectrometer Efficiency
 - Drift Chamber Tracking Efficiency
- Resolution
 - Drift Chamber Position Resolution
 - Momentum Resolution
 - Angular Resolution
 - Vertex Resolution

Efficiency

- Michel positron trigger mixed in MEG physics run
- Spectrometer efficiency : 再構成されたMichel positronの数と、targetに止まったmuon数から計算できる
- Target muonの数はproton beamのcurrentから見積もる ことができる

$$- N_{obs} = 6.677 \times 10^{10} = N_{stop\mu} \times \Omega_{acc} \times \varepsilon_{(e+)}$$

$$- N_{stop\mu} \times \Omega_{acc} = (15.5 \pm 0.7) \times 10^{10}$$

$$\mathcal{E}_{(e+)} \approx (43 \pm 2) [\%]$$

$$\mathcal{E}_{matching} \approx 46 [\%]$$

$$\mathcal{E}_{(e+)} \approx 14 [\%] \ln 2008$$

Resolution Z resolution Drift chamber's intrinsic position resolution R resolution Ζ 506.15 426.65 202.04 Momentum resolution charged particle Angular resolution Spectrometer performance Vertex resolution

Z/R resolution

- Z resolution : charge divisionで再構成されたZ
 とZ in Trackの残差
- R resolution : drift timeから再構成されたRとR in Trackの残差
- Tailを考慮して2 gaussianでfitする

Momentum resolution

- Michelのtheoreticalなspectrumに selection efficiencyの関数と resolutionをかけたものが実際のe⁺ energy spectrumとなる
 - → Michel Energy spectrum から resolutionを評価することができる
- Resolution functionとして3 gaussian を用いる
- 結果 : σ_p eff.=(0.57±0.02) [MeV]
- 52.8 [MeV] に対しては 1.08%の resolutionとなる

Angular resolution

- Angular resolution is estimated by double turn track
 - Compare 1st turn and 2nd turn
- MCによるstudyから、2 turn methodでは0の 角度分解能を実際より少し悪く見積もってい ることがわかっている →これを補正する

Vertex resolution

- Hole method
 - Target上にあけている穴を再構成された vertexがどれほど再現できるかで、target 上でのposition resolutionを見積もること ができる

Vertex resolution

- Hole method
 - Target上にあけている穴を再構成された vertexがどれほど再現できるかで、target 上でのposition resolutionを見積もること ができる

Noise

• 現在、drift chamberの分解能はnoiseによって強く制限されている

- Noise levelを1/3まで落とせればZ resolutionが2倍良くなる(MC simulation)
- Z resolutionが良くなればθ resolutionも良くなる
- MEG実験ではdrift chamberからの信号をwaveformとして取得しているため、offline analysisで取り除ける可能性がある

Future prospects

- Calibrationが完璧では無いので、2009年の resolutionはまだ改善の余地あり
- ・ 放電問題の解決によりEfficiency, Resolutionが改善した現在、Resolutionを主に制限しているのはnoise
 である
- Ground 強化等、hard面でnoiseの低減を行う
- Drift chamberは先に述べたようにすべてのデータを waveformとして収集しているため、offlineでnoiseを 低減することも可能で、現在そのためのstudyを進め ているところである

Summary

- 2009年runでの陽電子スペクトロメータの性能評価を行った
- 各値の2008年runとの比較を表に示す

		Prelimina .	
	2008	2009	
Efficiency (%)	14	43	
Z/R resolution (µm)	819/202	784/239	
e⁺ momentum (%)	1.6	1.08	
e ⁺ Angle (mrad)	10(φ)/18(θ)	8(φ)/11(θ)	
Vertex resolution (mm)	3.2(R)/4.5(Z)	- /3.1(Z)	

- これらの結果はpreliminaryなものであり、calibrationや解析 方法の改善等により、向上する可能性がある
- さらにresolutionを向上させるために現在soft wareによる noise reduction algorithmのtestを進めているところである