

金子大輔 (東大,ICEPP) 他MEGコラボレーション 日本物理学会@弘前大学

Contents

Introduction

LXe Calorimeter Monitoring

Pion Charge Exchange Calibration

Set up of BGO Detector

Fast Result of CEX Calibration

MEG実験における液体キセノンカロリメータ

★ 900歳の液体キセノンに846本の光電子 増倍管が浸されている (2011年9月現在、世界最大のLXe検出器)

★ 液体キセノンの特徴
光量(Nal(Tl)比75%)
減衰時間(4, 22, 45ns)
一様性 …etc.

★ 技術的課題 165Kで安定に保持 純度の管理

<u>MEG実験で高いSensitivity に達するには</u> <u>γ線のエネルギー分解能が特に重要。</u>

Contents

Introduction

LXe Calorimeter Monitoring

Pion Charge Exchange Calibration Set up of BGO & LYSO Detector Fast Result of CEX Calibration

液体キセノンカロリメータの較正手段

- LED :PMTのゲイン測定
- α線源 :PMTのQE測定
- 宇宙線 :定期的にモニター
- Am-Be線源

:4.4 MeV γ

CW 加速器

:17.6MeV γ Li(ρ,γ)Be :4.4, 11.7 MeV γ B(ρ,γ)C

Neutron generator (new) : 9.0 MeV γ Ni(n, γ)Ni*

Charge Exchange (π⁰→γγ) :55MeV, 83MeV, 129MeV ↑MEGシグナル(52.8MeVに近い)

2010年までの γ 線エネルギースケール uncertainty は約0.3%と見積もられている。

NEUTRON GENERATOR

2010年に導入。 Niの熱中性子捕獲に伴い単色γ線、9.0MeVが放出される。 パルス状の放射をトリガーとリンクし、μビーム使用時も利用できる。

2011/9/17

RUN2011 光量モニター

Contents

Introduction

LXe Calorimeter Monitoring

Pion Charge Exchange Calibration

Set up of BGO & LYSO Detector

Fast Result of CEX Calibration

CEX calibration

π粒子のcharge-exchange反応 (π^{-} + p→ π^{0} + n) により π^{0} が放出され、ただちに 2つの γ に崩壊する。2本の γ 線が反対方向を向いているイベントだけを選ぶことで、 単色に近い55MeVと83MeVの γ 線のみを取り出すことができる。

LXe検出器の特定の領域とタ グ用の検出器でcoincidence したイベントを収集する。

タグ用の検出器を移動させな がら、XECのacceptanceをス キャンしていく(24か所)。

πºを介さない過程(Radiative Capture : π⁻+ p→γ+ n)により、 129MeV 単色のγも得られる。

タイミングの較正も可能。(時間分解能の良い別の検出器を併用)

2011年の変更点 A

2010年までγ線のタグに用いていたNal測定器を、BGOを用いたものに更新する。

1.アクセプタンス →CEX期間を短縮可能 2.位置分解能

3.エネルギー分解能

要求値はσ=7%(@55MeV) Nalの実績3.9%

2011年の変更点 B

タイミング計測に使用していた検出器(プラシン、鉛コンバータ付)を LYSO結晶を用いたものに更新する。

種類	プラシン	LYSO
比重(g/cm ³)	1.0	7.4
波長(nm)	~420	428
減衰時間(ns)	~3	40

- ★検出効率の向上が見込まれる 阻止能が大きくなる
- ▲時間特性はプラシンの方が良い 光量の増加で埋め合わせ可能か

1個の結晶を両側で読み出す 同型の検出器2枚重ねで使用

Contents

Introduction

LXe Calorimeter Monitoring

Pion Charge Exchange Calibration

Set up of BGO & LYSO Detector

Fast Result of CEX Calibration

BGO 設計と製造

Nal 検出器の移動装置はそのまま用い、結晶とそれを保持するケースを交換

201

←接着には optical cement を使用した

←パッキング 確認の模様 BGO検出器の較正手段 LED :モニター用 宇宙線 : energy deposit 約60MeV ↓ PMTのHV調節に使用

CW

: ターゲット位置から入射 エネルギーが既知(17.6MeV) ↓ energy scaleの(仮)決定に使用。 (CEXと合わせて最終的な値を決める)

各16chでの宇宙線landauピーク 縦4本のcoincidenceをトリガー 条件にしている、

検出器の位置依存性

陽電子スペクトロメータ用ソレノイド磁石からの漏れ磁場に PMTが影響を受ける可能性がある。

50[gauss] 程度 ⊕ 角度変化 約30° 場所による依存性がどの程度か、確認する。

2011/9/17

2011年 CEX スケジュール

<u>∠</u> 9	∳年のCEXrunは)/2~9/12に計画	6/末 8/末 MEG run Cl	9/中 12/上 MEG run
	9/2 昼	π ^o run DAQ 確認	
	9/2 夜 ~ 9/6 深夜	π^0 run Scan 1回目	
	9/7	XEC·BGO 単独 DAQ	
	9/7 夜~9/10 夜	π^0 run Scan 2回目	←LYSOカウンターの時間分解能
	9/11	XEC単独 DAQ	が良くなかったためLYSO検出器
	9/12	別位置でDAQ	で以前の衣直に伏して別た。

所要時間約2時間30分/15万event (2010の半分)

トリガーレート

(XEC+BGO) 12.5Hz(2010は4.6Hz)

(XEC+LYSO) 5.4Hz(2010は2.7Hz)

*DAQ効率改善も含む(約1.3倍)

検出器の検出効率

Nal→BGO 2.4倍、 鉛preshower→LYSO 1.6倍

2011/9/17

Contents

Introduction

LXe Calorimeter Monitoring

Pion Charge Exchange Calibration

Set up of BGO & LYSO Detector

Fast Result of CEX Calibration

BGO検出器でのスペクトラム

シグナル波形のノイズ除去などはまだ行っていない。 55MeVと83MeVのγ線を区別するには十分な分解能

BGO検出器によるγ線の選別

2011/9/17

液体キセノン検出器の結果

まとめと今後

Run2011も安定してデータを取得している。

BGO検出器、LYSOカウンターの製作・据付は無事に終了した。

2011年のCEX runのデータ取得を完了した。

BGOは正常の動作 ・検出効率には期待通りの改善がみられた。 →今後、スケジュールはより効率化できる ・エネルギー分解能は去年より悪いが、十分。

Xe検出器の分解能評価の準備が整った。

来年のCEXへ向けて

- ・解析結果から、スケジュールを最適化。
- ・LYSOのスタディを行う。

Thank you for your listening !!

MEG2010 result

Ni (n γ)

2

反応 ³⁸ Ni(n-a) ⁵⁹ Ni	ニッケルの天 然存在比 (%)	捕獲断面積 (barns)	エネルギー (MeV)
60 Ni(n, γ) 61 Ni [*]	67.88	4.4	9.000
	26.23	2.6	7.820
⁶² Ni(n, 3) ⁶³ Ni *	3.66	15	6.838
⁶⁴ Ni(n, ?) ⁶⁵ Ni *	1.08	1.52	6.098

	LXe	LAr	NaI(Tl)	CsI(Tl)	BGO	LSO(Ce)	$PbWO_4$
Density (g/cm ³)	2.98	1.40	3.67	4.51	7.13	7.40	8.3
Radiation length (cm)	2.77	14	2.59	1.86	1.12	1.14	0.89
Mollier radius (cm)	4.2	7.2	4.13	3.57	2.23	2.07	2.00
Decay time (ns)	45	1620	230	1300	300	40	$30/10^{1}$
Emission peak (nm)	178	127	410	560	480	420	$425/420^{1}$
Relative output	75	90	100	165	21	83	$0.083/0.29^{1}$

25

2011/9/17

Monitoring tools of LXe detector

Cockcroft-Walton accelerator Nuclear reaction by protons $Li(p, \gamma)Be 14.6, 17.6MeV$ $B(p, \gamma)C 4.4, 11.7MeV$ Useful to monitor the light yield and to check the uniformity of detector response

Connecting work

← BGO & PMT were hold until cement cured in case

Just after connect BGO & PMT \rightarrow

2011/9/17

Taping for shading

← LED & Pt100 are soldered to base plate.

At first, I thought to use heat- shrinking tube at connecting part. This found out to be too thick to installation of BGO casing. ↓ Changed to usual taping

Insertion of BGO detector

Replaced inner detector case

1 mm thick Teflon plate for spacing & less friction BGO detectors in casing

Cabling around detector case

Cables (Signal, HV, LED, Pt100)

go out of inner case through window on both side. And wind inside outer case, come out from hole on the top of outer case.

2011/9/17

Nal detector

2011/9/17

Fine 金底比喇T 4本物理学会2011秋季大会

		Image: Second	83Me [°] 55Me
Nal(Tl)	種類	50 ₁₅₀ 155 160 165	170 175 opening angl
3.67	比重(g/cm ³)	7.13	
APD	光読出し	PMT	
6.25角×30	結晶寸法(cm)	4.6角×20	
17%	トリガー効率*	38%	
10%/K (APD)	温度依存性	-0.9%/K (BGO)	
	磁場依存性		
ペルチェ素子で 温度をコントロール		位置(磁場)による ゲイン差を調査要	

BGO detector characteristics

温度依存性

33

History of BGO & XEC gain in CEX

7/19/2011

/9/17

- ① Precision of CR level: 0.057 ⊕ 0.151, 0.077 ⊕ 0.064
- Average scale factor : 0.21 / sqrt(12), 0.432 / sqrt(12)
- ③ Time variation : CW_HistoryRMS \ominus CW_precision = 0.183, 0.119
- (s) Position variation : π^0 _UniformityRMS $\ominus \pi^0$ _precision = 0.194, 0.224
- Energy-scale uncertainty was one of the contributing systematics on final result, but not dominating one any more.

Yusuke UCHIYAMA