

# Recent result from the MEG experiment





#### 2011年9月19日 日本物理学会2011年秋季大会 弘前大学







Analysis



Future prospect and summary

R.Sawada

# Introduction of the MEG experiment

R.Sawada

#### **Physics Motivation**



Forbidden in the standard model Discovery  $\rightarrow$  evidence of new physics. Previous upper limit (1.2×10<sup>-11</sup>) is close to prediction. New physics predict B.R. from 10<sup>-15</sup> to 10<sup>-11</sup>.

● MEG goal : ~10<sup>-13</sup>



R.Sawada

# Signal and Background





R.Sawada

#### The detector



#### PSI : most intense DC muon



R.Sawada



#### Coordinate system



R.Sawada

#### Analysis method





Signal RMD BG



R.Sawada









# Analysis

#### **Positron analysis**

Gamma analysis Relative alignment Physics analysis

R.Sawada





R.Sawada





R.Sawada





R.Sawada





R.Sawada







#### two turn method

a





#### **Correlations**







# Many of correlations can be measured using data Agreement with MC <10\% $\,$

Large uncertainty 25% is assigned to un-measurable correlations



R.Sawada

## Correlations and physics analysis

All the known correlations are implemented in signal PDF including event-by-event feature Both the **fitting** and the **toy-MC generation** 





When correlation is included,  $\sigma_{inner}$  is used, instead of  $\sigma_i$ 

R.Sawada

#### Alignment of drift chambers





**1.5 um** and **10<sup>-2</sup> mrad** level reproducibility, from different initial alignment.

Fitting error : 130 um and 0.2 mrad.

R.Sawada

Recent Result from the MEG experiment

20



h the MEG experiment



h the MEG experiment

## MisaigamentofieldSensors



Calculated field : Accurate, but possible systematic differences
 Measured field : Realistic, but possible measurement errors

Possible misalignment of hall sensors

 $\blacksquare$  causes false  $B_{\phi}$  and  $B_r$  from  $B_z$  Secondary effect



## MisaigamentofialSensors



- 1. Calculated field : Accurate, but possible systematic differences
- 2. Measured field : Realistic, but possible measurement errors
- 3. Reconstructed field : Realistic, and measurement errors are reduced

Possible misalignment of hall sensors

 $\blacksquare$  causes false  $B_{\Phi}$  and  $B_r$  from  $B_z$  Secondary effect



$$\begin{array}{c}
1.27 \text{ } @ \text{center, } 0.49 \text{ } @ \text{ends} \\
\begin{pmatrix}
B_z \\
B_r \\
B_r \\
B_{\phi} \\
\end{pmatrix} = \begin{pmatrix}
1 & \theta_{zr} & \theta_{z\phi} \\
\theta_{rz} & 1 & \theta_{r\phi} \\
\theta_{\phi z} & \theta_{\phi r} & 1
\end{pmatrix}
\begin{pmatrix}
B_z \\
B_r \\
B_{\phi} \\
\end{bmatrix}
\begin{array}{c}
\text{Small} \\
(< 0.2 \times Bz) \\
\hline
B_r \\
B_{\phi} \\
\end{bmatrix}
\end{array}$$
Ideally zero
$$\begin{array}{c}
\text{Totally zero} \\
\text{Total Schedule equations} \\
\end{array}$$





# Analysis

Positron analysis **Gamma analysis** Relative alignment Physics analysis

R.Sawada



H Sy

- Non-uniformity due to
  - Geometry
  - Reconstruction algorithm

#### Correction using

- 18 MeV calibration gamma (High stat)
- Additionally, 55 MeV calibration gamma Energy dependence correction

#### After correction : ~0.2 % uniform



#### 18 MeV data, uniformity before correction



R.Sawada

#### Energy stability



Energy absolute scale calibration CEX 55, 83 MeV  $\gamma$ 

Energy scale time-variation calibration

CW 18 MeV  $\gamma$ Ni-n 9 MeV  $\gamma$ AmBe 4.4 MeV  $\gamma$ CR peak



#### Check Fitting RMD $\gamma$





# Analysis

Positron analysis Gamma analysis **Relative alignment** Physics analysis

R.Sawada

#### Alignment between detectors



#### Positron spectrometer

- Optical survey
- Photon detector
  - PMT position scan using AmBe source
  - Calibration 18 MeV gamma, with lead collimators

Cosmic rays passing both systems

~1mm agreement





# Analysis

Positron analysis Gamma analysis Relative alignment **Physics analysis** 

R.Sawada

#### Likelihood function



# $\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}}) = f(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}}) \times \\ \prod_{i=1}^{N_{\text{obs}}} (N_{\text{sig}}S(\vec{x}_i) + N_{\text{RMD}}R(\vec{x}_i) + N_{\text{BG}}B(\vec{x}_i))$

R.Sawada







## Likelihood and test-statistic





R.Sawada

## Likelihood and test-statistic





35

#### **Normalization**



![](_page_35_Figure_2.jpeg)

R.Sawada

#### **Normalization**

![](_page_36_Picture_1.jpeg)

![](_page_36_Figure_2.jpeg)

#### **Normalization**

![](_page_37_Picture_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

# Result

R.Sawada

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

#### # of muons stopped on the target

![](_page_39_Figure_3.jpeg)

R.Sawada

Recent Result from the MEG experiment

40

![](_page_40_Picture_0.jpeg)

#### <u>Sensitivity</u>

![](_page_40_Figure_2.jpeg)

![](_page_40_Figure_3.jpeg)

Sensitivity : Median UL of MC with background-only hypothesis

R.Sawada

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

2009

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

#### contour : signal PDF (39.3, 74.2, 86.5 %)

R.Sawada

![](_page_43_Picture_6.jpeg)

#### <u>2009, Result</u>

![](_page_44_Picture_1.jpeg)

2009 result stable

![](_page_44_Figure_2.jpeg)

Nsignal Best fit : 3.0(preliminary)  $\rightarrow$  3.4(updated result)

 $\begin{array}{ll} \textbf{1.7} \times 10^{-13} < \mathcal{B}(\mu \rightarrow e\gamma) < \textbf{9.6} \times 10^{-12} & @ 90\% \text{ C.L.} \\ \text{Best fit} : \textbf{3.2} \times 10^{-12} & & \text{p-Value of background-only hypothesis: } \textbf{8\%} \end{array}$ 

2010

![](_page_45_Picture_1.jpeg)

![](_page_45_Figure_2.jpeg)

#### contour : signal PDF (39.3, 74.2, 86.5 %)

R.Sawada

Recent Result from the MEG experiment

46

![](_page_46_Figure_0.jpeg)

Note these curves are not directly used to derive the U.L., which are obtained in a frequentist approach

R.Sawada

Recent Result from the MEG experiment

47

![](_page_47_Picture_0.jpeg)

![](_page_47_Figure_1.jpeg)

L 8

![](_page_47_Figure_2.jpeg)

| Data set    | $\mathcal{B}_{\mathrm{fit}}$ | $\operatorname{LL}$   | UL                    |
|-------------|------------------------------|-----------------------|-----------------------|
| 2009        | $3.2 \times 10^{-12}$        | $1.7 \times 10^{-13}$ | $9.6 \times 10^{-12}$ |
| 2010        | $-9.9 \times 10^{-13}$       | —                     | $1.7 \times 10^{-12}$ |
| 2009 + 2010 | $-1.5 \times 10^{-13}$       | _                     | $2.4 \times 10^{-12}$ |

Systematic uncertainties (in total 2% in UL)

- relative angle offsets
- correlations in e<sup>+</sup> observables
- normalization

R.Sawada

![](_page_48_Figure_0.jpeg)

### <u>Summary</u>

- 2009+2010 data
  - Zero-signal is consistent
  - 5 times tighter new limit

#### • 2x2010 data in 2011 and 2012

![](_page_49_Picture_5.jpeg)

 $\mathcal{B}(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$  @ 90% C.L.

![](_page_49_Figure_7.jpeg)

R.Sawada

![](_page_50_Picture_0.jpeg)

# Back up

R.Sawada

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Figure_1.jpeg)

Recent Result from the MEG experiment

53

#### Energy reconstruction

![](_page_53_Picture_1.jpeg)

Optimize weights by minimizing pi0 peak width

![](_page_53_Figure_3.jpeg)

R.Sawada

#### Energy resolution

![](_page_54_Figure_1.jpeg)

![](_page_54_Figure_2.jpeg)

True  $E_{\gamma}$  distribution after cut by reconstructed opening angle > 170°

![](_page_54_Figure_4.jpeg)

![](_page_54_Figure_5.jpeg)

Actual resolution is better than the measured by ~0.15%

Better linearity of 55 and 83 MeV

R.Sawada

### Cosmic ray rejection

![](_page_55_Picture_1.jpeg)

Two variables cut

- Ratio of Inner and Outer charge
- Depth

![](_page_55_Figure_5.jpeg)

Additional cut using waveform Waveforms of a small fraction of CR are narrow.

![](_page_55_Figure_7.jpeg)

R.Sawada

#### Performance summary

![](_page_56_Picture_1.jpeg)

|                                                                                                                                                                                                                                                         | 2009                                                                                               | 2010                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Gamma Energy (%)<br>Gamma Timing (psec)<br>Gamma Position (mm)<br>Gamma Efficiency (%)<br>$e^+$ Timing (psec)<br>$e^+$ Momentum (keV)<br>$e^+ \theta$ (mrad)<br>$e^+ \phi$ (mrad)<br>$e^+ \phi$ (mrad)<br>$e^+$ vertex Z/Y (mm)<br>$e^+$ Efficiency (%) | 1.9<br>96<br>5 (u,v), 6 (w)<br>58<br>107<br>310 (80% core)<br>9.4<br>6.7<br>1.5 / 1.1 (core)<br>40 | 1.9<br>67<br>5 (u,v), 6 (w)<br>59<br>107<br>330 (79% core)<br>11.0<br>7.2<br>2.0 /1.1 (core)<br>34 |
| e+-gamma timing (psec)<br>Trigger efficiency (%)                                                                                                                                                                                                        | 146<br>91                                                                                          | 122<br>92                                                                                          |
| Stopping Muon Rate (sec <sup>-1</sup> )<br>DAQ time/ Real time (days)                                                                                                                                                                                   | 2.9×10 <sup>7</sup><br>35/43                                                                       | 2.9×10 <sup>7</sup><br>56/67                                                                       |
| Expected 90% C.L. Upper Limit                                                                                                                                                                                                                           | 3.3×10 <sup>-12</sup>                                                                              | 2.2×10 <sup>-12</sup>                                                                              |

Timing improvement by waveform digitizer upgrade in 2011; The e+ tracking slightly worse due to DC noise problem in 2011 Recent Result from the MEG experiment

R.Sawada

![](_page_57_Picture_0.jpeg)

![](_page_57_Picture_1.jpeg)

## DRS, Electronics timing accuracy : $130 \rightarrow 48$ psec

![](_page_57_Figure_3.jpeg)

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

#### $\mathcal{B} \times 10^{12}$

| Data set | Best fit | LL (90% C.L.) | UL (90% C.L.) | UL (95% C.L.) |
|----------|----------|---------------|---------------|---------------|
| 2009     | 3.2      | 0.17(0.17)    | 9.6(9.4)      | 11 (11)       |
| 2010     | -0.99    | —             | $1.7 \ (1.7)$ | 2.3(2.2)      |
| Combined | -0.15    | —             | 2.4(2.3)      | 2.9(2.8)      |

R.Sawada

3

![](_page_59_Figure_1.jpeg)

Recent Result from the MEG experiment

60

![](_page_60_Picture_0.jpeg)

![](_page_60_Picture_1.jpeg)

![](_page_60_Figure_2.jpeg)

![](_page_61_Picture_0.jpeg)

![](_page_61_Picture_1.jpeg)

![](_page_61_Figure_2.jpeg)

![](_page_62_Picture_0.jpeg)

![](_page_62_Picture_1.jpeg)

![](_page_62_Figure_2.jpeg)

![](_page_63_Figure_0.jpeg)

64

e/