

<u>MEG実験によるμ→eγ崩壊探索の</u> 最新状況

日本物理学会2012年秋季大会 13/Sep./2012 @京都産業大学

ICEPP, the University of Tokyo
内山 旋祐

他、MEGコラボレーション

JPS 2012 Autumn, 13/Sep/2012

JPS 2012 Autumn, 13/Sep/2012

Published result

- 2009+2010年データを用いたMEG 2nd 物理結果を昨年夏公表
 - 世界最高感度での探索を行い、今までの上限値を5倍上回る制限を与えた。
 - ・ ガンマ線解析の向上(分解能の改善・系統誤差の低減)
 - 陽電子再構成変数間の相関の理解と組み込み
 - 検出器間のアライメントの徹底
 - 物理解析の改善(BG制限の組み込み)

JPS 2012 Autumn, 13/Sep/2012

The MEG Experiment

- **世界最大強度 直流**ミューオンビーム @ PSI
- •特殊勾配磁場による高計数対応 e+ スペクトロメータ
- 世界最大液体キセノン検出器による高精度ガンマ線測定

<u>2011データ・What's new?</u>

統計

- 2011 ≥ 2009+2010 統計量2倍以上に
- マルチバッファの導入によるDAQ&トリガー効率の改善
 - (>99×95% ←84×92%)

- ガンマ線解析
 - 波形を用いたパイルアップ分離
 - 検出効率の改善(↑6%)
 - エネルギー較正法の改善
 - 分解能・スケールを決定するπ⁰較正法における,BGO検出器(←NaI)の導入 による、系統誤差の低減。
 - エネルギー分解能: (平均)1.7% (←1.9%)
- 陽電子解析
 - トラッキングアルゴリズムの改善
 - 検出効率の改善(↑5%)
 - イベント毎の再構成精度・変数相関の評価
 - デジタル波形フィルタによるノイズ除去
- 2011データ解析準備完了
 - almost ready to open blind box

JPS 2012 Autumn, 13/Sep/2012

e⁺飛跡再構成

- 2009・2010年データを再解析中 - 改良した解析を前データにも適用し、検出効率を高める。
- 今秋に2011データおよび再解析データをアンブラインド
 - 2009-2011データの結果でパブリッシュ予定
 - 予想感度: <1×10⁻¹²

- 8月1日よりMEG DAQを再開 ~ 12月半ば(クリスマス)まで
 - ドリフトチェンバーを7枚,新装(16枚中)
 - ビーム強度を上げて走っている (3.4×10⁷µ/sec, ↑~15%)
 - 2011年と同程度(×1.1)の統計を取得予定
- 来年度、3ヶ月程度のビームタイムを要求
 - 冬の停止期間中、実験装置はいじらずに、
 - 加速器再開とともに、速やかにランを開始
 - 2012の半分ほどの統計
 - MEG 1st stage 終了予定。
- 2009-2013 (full data)

 現在公開データの3.5倍の統計
 予想到達感度:~6×10⁻¹³

(90% C.L.)

- 現在,ランと並行して,感度を1桁上げた実験へのR&Dを進めて いる。
 - 現MEG実験の経験を活かし、
 - 検出器のUpgradeのみで、安く・早く
 - ビーム強度を上げる余地は現状であり。
 - 目標到達感度: ~6×10⁻¹⁴
- 詳しくは以下のトークで
 ガンマ線検出器: 澤田(12pSH-7)
 陽電子 飛跡検出器: 藤井(13pSG-9)
 時間測定: 西村(14pSK-4)
 アップグレイド全体像:岩本(14aSK-6)

Conclusion

- MEGは新物理に対して最も厳しい制限の一つを与えている。
 - μ→eγの上限値を5倍更新 (BR<2.4×10⁻¹²)。
- 新しい結果の公表はもうすぐ。
 - 今秋中に統計量倍の結果を発表 - 感度 **<1×10⁻¹²**
- 今年度のランも開始済み、順調に統計を貯めている。
 - ビーム強度を上げて走っている。
- 来年度少し走り、MEG 1st stage 終了予定。
 - 予想到達感度 ~6×10⁻¹³
- さらに1桁感度を上げる実験の準備を並行して進めている。