

MEG実験 run2011 液体キセノン検出器の 性能評価

東京大学 理学系研究科 物理学専攻 金子大輔 他、MEG コラボレーション

コンテンツ

MEG2011RUNにおける液体キセノン検出器の性能

② MCシミュレーションによる性能の調査

MEGの液体キセノンカロリメータ

Coordinates for XEC

現時点で世界最大 2.7トンのXeが使用されて いるガンマ線カロリメータ。

内面に846本の光電子増 倍管。run2007から運転 し、2011年末時点で832 本が生存。

キセノンのシンチレーショ ン光を測定し、入射したガ ンマ線の位置、時間、エネ ルギーを再構成する。

Accidental Background が見える領域に入りつつ あり、分解能の向上が求め られている。(特にEnergy)

日本物理学会第67回年次大会

Run 2010 の性能

γ Energy	1.9%		
u,v position	5mm		
w position	6mm		
γ timing	67ps		
γ Efficiency	59%		

(ターゲットから入射する 52.8MeVガンマ線について)

2012/3/25 内部の様子

MEG2011RUNにおける液体キセノン検出器の性能 MCシミュレーションによる性能の調査

CEXによる較正

 $\pi^- + p \rightarrow \pi^0 + n, \ \pi^0 \rightarrow \gamma + \gamma$ Charge EXchange 反応で得られるガンマ線で 液体キセノン検出器の較正を行う。

2つのγ線の角度を判別するために、反対側に別の検 出器が必要。

エネルギースケールの決定

エネルギー分解能の評価

時間分解能の評価

Run 2010 まで、Nal 検出器。2011にBGOに更新。

組み立て中のBGO検出器

2012/3/25

BGO検出器の性能

Nal 2010 実績 3.9% @55MeV

Position Error

(MChit位置) - (再構成位置) [cm]

black : weighted mean of E blue : weighted mean of \sqrt{E} green : Fitting of E map

RMS : 1.0 cm ←→Nal 1.8 cm

2011年のXEC性能(暫定版)

2011年のXEC性能(暫定版)

2012/3/25

コンテンツ

① MEG2011RUNにおける液体キセノン検出器の性能

② MCシミュレーションによる性能の調査

A, 実機のエネルギー分解能の悪い原因

B,反射を増加させる改良

MCでのエネルギー分解能は データより良い。乖離の原因は何か?

 $MC: \sim 1.0\% \quad \leftarrow \rightarrow \text{ DATA}: \sim 1.7\%$

以前の調査: イベントごとにPMTのゲインを変化 させることで分解能を劣化させる。

Energy resolution	Correct	±5%	±10%	±15%	±20%
acceptance	1.27%	1.32%	1.82%	2.42%	4.32%
u <15 v <30	0.93%	1.03%	1.29%	1.66%	2.14%

←MEG run 中で一つのPMTで、LEDイベントの 電荷を並べたもの、ばらつきは3%程度。

1、PMTのQEの誤差 2、photon 毎のゲインの変動

のある場合に付いて検討した。

MCスタディの結果 A-1

PMTのQE見積もりに系統的な誤差が あった場合を想定。解析に用いるPMTの ゲインを、異なるモデルのシミュレーショ ンで作成。

Q.E.に上図の様な、RMSで8%程度の 誤差は、装置全体のエネルギー分解能 に顕著な差をもたらさない。

MCスタディの結果 A-2

PMT内部の構造によるgainの不均一さを考慮した場合 データシートから位置によるgain依存性のtableを作成 →

1photon 毎に、tableからランダムに値を取り出す。

 $\sigma_{\rm up}$ FWHM (%) 1.8 0 0 FWHM (%) 60 60 1.6 40 40 5 1.4 20 20 4.5 1.2 0.8 3.5 -20 -20 0.6 -40 normal 2.5 -60 -10 0 -20 10 20 -20 -10 0 10 20

relative gain

Photon毎のgain のずれは 統計的に均されてしまう。

2012/3/25

MCスタディの結果 B-1

MCでのエネルギー分解能は、データより良いが、統計から 期待される値よりは悪い。浅い(壁に近い)イベントはPMTと conversion point の相対位置による効果が顕著→

カロリメータ壁面での反射率を大きくすることが改良案の 一つとして考えられている。 PMTホルダーでの反射率を 1とおいたシミュレーションで評価を行った。

深さ[cm]	反射率0.0	反射率1.0
0.8~3	1.54	1.06
3~8	0.94	0.85
8~22	0.85	0.85

 $\sigma_{\rm UP}$ [%]

反射率が高い場合は、浅い領域、アクセ プタンスの端のエネルギー分解能が良い。

反射光が多くなると、位置の再構成にも影響が出ることが予想される。

反射率が高い場合も、位置分解能に影響は現れない。

- ☆ 液体キセノン検出器はrun 2011の間無事にデータを取得した。
- ☆ run 2011 データの物理解析に向けて、性能評価が進められている。 暫定的な結果だが、エネルギー分解能が改善した。
- ☆ MCシミュレーションを用いて、実際の検出器の分解能がMCに及ばない 原因について調査した。調査した項目は決定的な原因ではない。
 - 別の要因を探索 PMT光電面のphotonの入射位置を用いる PMTcathodeの反射率 Xeの対流によるゆらぎ
- ☆ 改良案の一つ、壁面での反射率を高くした場合について調査を行った。 壁に近いイベントのエネルギー分解能が良くなる。

→現実的なケースの調査。

おわり

おまけ

2011年の変更点 A

2010年までγ線のタグに用いていたNal測定器を、BGOを用いたものに更新する。

要求値は σ=7% (@55MeV) Nalの実績3.9%

Event reconstruction & analysis

Results by reconstruction methods

Some reconstruction ways are prepared for this study

For XEC				For BGO			
 A. MC 1st conversion point + random B. MC 1st conversion point C. Reconstruction from generated γ 			ア. Use center coordinate イ. Mean of energy deposit ウ. Conversion point エ. Reconstruction from generated γ				
	RMS of 55MeV peak	Ultimate case	lf BGO is ideal	BGO normal	BGO center	XEC no random	Nearest to real
	XEC	С	С	С	С	В	А
	BGO	Н	ウ	イ	ア	イ	イ
	ID = 0	0.27 %	0.30 %	0.30 %	0.33 %	0.39 %	0.41 %
	ID = 1	0.61 %	0.64 %	0.65 %	0.71 %	0.80 %	0.81 %
	ID = 2	0.78 %	0.82 %	0.83 %	0.95 %	0.97 %	0.98 %

Opening angle cut is 170° in all cases.

Evaluation of XEC energy resolution

XEC timing

intrinsic timing resolution

Calculated by T_{odd} -T_{even}

37.5 ps @55MeV 30.2 ps @83MeV

Gain fluctuation of XEC PMT

PMT Effective Coverage

Plot of

Directly reached photon Generated scintillation photon

Event is generated over all interesting region. Reflection ratio is 0.

Number of detected photons

reflectivity 0

reflectivity 1

25

u,v slice

