A Search for the Decay μ⁺→ e⁺γ Using a High-Resolution Liquid Xenon Gamma-Ray Detector

高分解能液体キセノンガンマ線測定器を用いた $\mu^* \rightarrow e^* \gamma$ 崩壊の探索

MEG実験による μ→eγ探索 ○未発見の荷電レプトンフレーバー混合を調べる ○ γ線を液体キセノン検出器にて検出 ▶開発・較正・性能測定・物理解析 2009年のデータを用いた解析

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

Year

フレーバーの物理とMEG

µ →e γ

<u>μ粒子の通常崩壊</u>

- Br($\mu \rightarrow e \nu \nu$) ~ 100 %
- Br($\mu \rightarrow e \nu \nu \gamma$) = 1.4 % (E_{γ} > 10 MeV)

Lepton Flavor Violation (LFV)

- Br(μ → e γ) < 1.2 x 10⁻¹¹ (90% Confidence Level (C.L.)) by MEGA実験 (1999)
- 標準理論 (SM) + ニュートリノ振動 で起こるµ→eγ崩壊 ~ O(10⁻⁶⁰) $B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \sum_{i} \left| U_{\mu i}^{*} U_{e i} \frac{\Delta m_{21}^{2}}{M_{W}^{2}} \right|^{2}$ $\approx \frac{\alpha}{128\pi} \sin^{2} 2\theta_{12} \left(\frac{\Delta m_{21}^{2}}{M_{W}^{2}} \right)^{2} < 10^{-54}$ μ^{+} $\overline{\nu}_{\mu}$ ν_{e} e^{+}
- 標準理論のみでは観測される粋に現れない(50桁ほどの差)
- 標準理論を拡張する理論の多くがLFVをMEGの到達範囲に予想

 の 超対称性理論,余剰次元,ヒッグス多重項,…
 - 既に観測されてもおかしくない領域

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

既にMEGが更新(2011)

µ→eγと物理モデル

μ⁺ →e⁺γとバックグラウンド

2012/3/24

Switzerland

FRANC

25 Miles

25 Kilomotor

- 5カ国、60人程の共同研究
- スイス Paul Sherrer研究所(PSI)
- 1999年に実験提案、2008年に初の物理測定
- 2011年に分岐比上限を更新、測定は進行中

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

GERMANY

ITAI

MEG

Mgäuei

Alner

2012/3/24

○非常に薄い超電導磁石 0.197X₀(85%)

2012/3/24

2012/3/24

- 液体キセノンシンチレータの利点
 - 速い時間応答 (τ_{decay}=45ns)
 - 高い制止力 (X₀ = 2.8cm)
 - 高い光量 (Nal(TI)の75%)
 - 自己吸収が無い ($Xe_2^* \rightarrow 2Xe + h\nu$)
 - 均一で劣化しない (液体)
 - 粒子識別 (2つの発光過程)
- ・難点と技術開発による解決
 - 真空紫外光 (λ=178nm) → PMT
 - 低温 (T=165K) → パルス管冷凍機
 - 純度 → 液相/気相純化装置

シンチレーション光読み出し波形 MEGでは1.6GHzで全波形を取得

- メタルチャンネルダイノード
- クォーツ窓、バイアルカリ(K-Cs-Sb)
 - 真空紫外光有感
- 低物質量 (~0.14X₀)
 - Ο γ線透過
- アルミ縞、ツェナーダイオード
 - 電圧降下防止

2012/3/24

900L液体キセノン検出器 (2.7トン)
 ○ 立体角11% (Δφ=120°, Δθ=30°), 14 X₀
 ○ 薄いγ線入射窓 (0.075X₀)

846本のPMTで光量分布を読み出し

2012/3/24

πビーム

Cockcroft-Walton (CW) 陽子加速器

CW加速器 (< 1MeV)

励起原子核ガンマ線(Li₂B₄O₇)

5¹¹B(p,γ)6¹²C → 4.4, 12 MeV γ線
 ○時間較正等

- 3⁷Li(p,γ)4⁸Be → 18 MeV γ線
 光量モニタ、位置依存補正等
 - 陽子ビームライン
 μ⁺ の下流側

ターゲット

Li₂B₄O₇ 陽子ターゲット ○ μ⁺ターゲットと入れ替え(10分) ○ 週に2,3回 20分のCW ラン

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

LXe detector

proton

muon

beam line

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

2012/3/24

Nal+APD 検出器

- 83MeV γ線の位置・エネルギーをタグする
- 3 x 3 Nal(Tl) を駆動 → LXe検出器全面で測定可能
 アバランシェ・フォトダイオード(APD)で光検出
 - APD + 温度制御で高磁場中の駆動でもゲインー定

• 時間測定

○ 鉛コンバータ+プラスチックシンチレータ+PMT

冷却•放熱 (18 ℃, ΔT< 0.1 ℃)

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

液体キセノン検出器 較正・性能評価

- 時間、位置
 - 入射位置付近のローカルなPMTでフィットして求める

■ LEDピーク・分散でゲイン絶対値を求める

• σ^2 = Gain × Mean × e/C_(const.) + const.

-Charge (e+)

検出器内 青色LED 10個

Q mean

液体キセノン内、ワイヤ5本に各5つのα線源(²⁴¹Am)

QE = α線MCとデータでのPMT出力比/LEDから求めたゲイン

2012/3/24

• モニタ : π⁰ ランの55 MeVで求めたエネルギースケールを全期間で安定に用いる

光量は2009年を通して非常に安定

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

2012/3/24

- π⁰からの 55 MeV ピークから見積もる
 - Exponential(テイル)+Gaussian関数で評価

 π⁺, μ⁺ビームのバックグラウンドの違いをペデスタルから取り入れる

- - > 2.1% (2<w<38 cm), 2.8 % (1<w<2 cm), 3.3 % (0<w<1 cm)

2012/3/24

エネルギー応答の線形性 → π⁰ runの3ピークで0.3%以内 エネルギー分解能のエネルギー依存性 → 信号エネルギーでの分解能へ換算

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏

2012/3/24

μ崩壊数見積もりに必要

- MCシミュレーション (53 MeV 信号)
 - 入射位置ごとの検出効率 •
- π⁰ → 2γ崩壊測定 (55 MeV 付近)
 - MCと測定の差から系統誤差見積もり
 - Nalのみで83MeVを要請した時のLXe側の55MeVピーク

29

解析領域相当のThresholdでMCと比較

アクシデンタルγ線バックグラウンドの見積もり

- MCからRD + AIF×分解能,ペデスタル
- 宇宙線カット後に残る宇宙線バックグラウンドを三次関数で用意
- ○トリガ効率曲線は誤差関数としてフィット
 - ▶ 解析領域の範囲外 (Εγサイドバンドの解析で利用)

2012/3/24

陽電子檢出

У 🔨

e⁺

○ カウンタ両端のPMT時間から

- 各ドリフトチェンバーのヒット判定
- 各ヒットを繋げて、トラック候補選出
- フィットによるトラックの再構築

Kalman filter

2012/3/24

陽電子検出性能・バックグラウンド

分解能の見積もり

 2つ以上ターンのあるトラックを 1つずつに分けて再構築し、差 を見積もる

○ エネルギー、放出角の分解能 e^+ reconstructed by *

(1st turn)

reconstructed by *

(2nd turn)

DC

Ο E₂: 0.74%

2012/3/24

 $\circ \phi_{e}$: 7.1mrad

 \circ θ_{e} : 11.2mrad

Number of events /(0.10 MeV) 2000 1000

e⁺バックグラウンドの見積もり

理論式×分解能でフィット

バックグラウンド分布見積もり

分解能部分

µ→evvスペクトル

5000

4000

3000

- ターゲット上の穴を トラックの射影から見積もる
- σ R: 3.3mm, Z: 3.4mm

- γ線・e⁺検出の時間性能は、RD peakから求める
- 低いγ線エネルギー領域のデータを用いる (ブラインド領域外)
 - \circ E_y : [40, 47] MeV,
 - O E_e : [45, 55] MeV
 - O ∆angle < 300mrad</p>
- Double Gaussian (RD peak) + Flat floor (Accidental)

○ 分解能のγ線エネルギー依存を補正

$$\sigma (t_{e\gamma}) = \sigma (t_e - t_{\gamma})$$

= 149ps \rightarrow **142ps at 52.8 MeV**

2009年測定

2012/3/24

μ⁺ → e⁺γ 物理解析 (2009)

- 測定器の較正
 - エネルギー(E_γ, E_e), 場所(θ_γ, φ_γ, θ_e, φ_e), 時間(T_{eγ})
- 最尤法に向けたProbability density function (PDF)の見積もり
 - 信号らしさ、バックグラウンドらしさを観測量から
 - 分解能の評価 → 信号のPDF
 - バックグラウンド評価 → バックグラウンドのPDF
- ミューオン崩壊数の見積もり
 - 検出効率、トリガ効率、等
- 物理解析の手順
 - ブラインド解析
 - ▶ ブラインド外でPDF, µ数の評価
 - ▶ 実験感度見積もり
 - 最尤法によるイベント数導出
 - ▶ シグナル数の見積もり
 - 90%信頼度の分岐比上限導出

2012/3/24

第67回年次大会(2012) 若手奨励賞受賞記念講演 西村康宏

物理解析は、 見積もられた検出器性能と 測定されたバックグラウンド分布 をPDFとして行われる

- ・信号数とBG数 (N_{sig}, N_{RD}, N_{BG})を見積もる
 - $O N = N_{sig} + N_{RD} + N_{BG}$
 - N_{obs}: 解析領域内の事象数

$$L(N_{sig}, N_{RD}, N_{BG}) = \frac{N^{N_{obs}} \exp(-N)}{N_{obs}!} \prod_{i}^{N_{obs}} \left(\frac{N_{sig}}{N}S_{i} + \frac{N_{RD}}{N}R_{i} + \frac{N_{BG}}{N}B_{i}\right)$$

- S_i , R_i , B_i : *i* 番目事象の PDF **S**ignal ($\mu^+ \rightarrow e^+ \gamma$), **R**D ($\mu^+ \rightarrow e^+ \nu \nu \gamma$), Accidental **B**ack**g**round
- PDF \mathcal{O} Observables : (E_{γ} , E_{e} , $\theta_{e\gamma}$, $\phi_{e\gamma}$, $t_{e\gamma}$)
- e⁺、γの位置などからObservablesを変数としたPDFを構築
- 実測分布(性能評価・バックグラウンド測定)を基にしたPDF
- 信号数N_{sig}の90%信頼領域を、Feldman-Cousins法で導出
 O Toy MCにより、PDFを元にして事象を生成、Likelihood比で Toy実験と比較
- 様々な解析手法で整合性を確認
 - Bayesian 手法, constant PDF, BG constraint.

2009 PRERIMINALY

Toy-MCによるPDFを元にした感度見積もり
 PDF Base
 O PDFからの生成, 測定BG rate, 信号O, 2009年統計数
 O 2009年感度 S₂₀₀₉ = 6.1 × 10⁻¹² in BR, (90%上限値)

• 信号らしさのランク ← S/(R'+B')

• Contours by 1, 1.65, 2 σ in PDFs

2012/3/24

- 信号らしい事象を全てチェック → 不審点、再構成を誤ったような点は見られない
- 最も信号らしいイベントの例

γ パイルアップは見られない

第67回年次大会(2012)若手奨励賞受賞記念講演

Maximum Likelihood Fit (2009)

2012/3/24

第67回年次大会 (2012) 若手奨励賞受賞記念講演 西村康宏 0.054

E. (GeV)

- 2009年MEG実験データを用いたµ⁺ → e⁺y探索を行った
 検出器の較正・性能評価を行い, PDFを構築して解析
- 見積もった性能を元に、µ→eγ分岐比範囲を導出

	$\left(\begin{array}{c} \sigma_{E_{\gamma}} \\ (\%) \end{array} \right)$	$\sigma_{(u,v,w)}$ (mm)	ϵ_{γ}	σ_{E_e} (%)	σ_{ϕ_e} (mrad)	σ_{θ_e} (mrad)	Vertex $\sigma_{z,y}$ (mm)	ϵ_e	$\sigma_{t_{e\gamma}}$ (ps)	$\epsilon_{trigger}$
2009	2.1	5, 6	0.58	0.74	7.1	11.2	3.4, 3.3	0.4	142	0.84

• 2009年の実験感度は

 $S_{2009} = 6.1 \times 10^{-12}$ ($S_{2008} = 1.3 \times 10^{-11}$)

● 90%信頼度での分岐比上限を与えた

 $BR_{2009} (\mu^+ \rightarrow e^+ \gamma) < 1.5 \times 10^{-11} \text{ at } 90\% \text{ C.L.}$

本結果は2010年7月での段階 (Preliminary)

その後、2009+2010年データで解析 (2011年公表)

2012/3/24

- 2010年データ取得(3ヶ月)
 - 2009年統計数の2倍
 - DAQ/トリガーの改善
 - ビーム輸送磁石の故障で中断

解析改善

- 系統誤差を抑える
 - e⁺トラッキングに用いる磁場を再考
 - 検出器の位置再測定 (DC, LXe, DC − LXe)
- 解析手法の改良
 - ドリフトチェンバー解析改善(ノイズ、変数相関等)
 - サイドバンドで見積もったバックグラウンド数を反映
 - 統計手法の見直し(プロファイル尤度)
- 2009年データのアップデート+2010年データ → 2011/7 公表

2012/3/24

MEG最新結果(2011年)

2012/3/24

• 2011年データは2009+2010データと同等量

- 2012~2013年辺りで一旦終了
 - 目標感度 O(10⁻¹³)
- 検出器のアップグレード計画を進行中

2012/3/24

- MEG実験では液体キセノンγ線検出器を開発
- 2009年に安定してµ崩壊データを取得し、解析
- PDFを元にLikelihood関数を構築し、μ→eγを探索
- γ線のエネルギー・位置・時間性能を掌握
 - ○頻繁な較正とモニタにより、安定したγ線検出が可能

O π⁰崩壊測定等を元に見積もり、PDFへ

- 前年の感度を大きく向上し、分岐比上限を設定
- 2011年にµ→eγ分岐比上限値更新、今尚測定中
 今後のアップグレード計画も進行中

<u>μ→e γ 以外の物理解析 (24日)</u>

- 24pFA-12 内山雄祐 「MEG実験におけるミュー粒子放射崩壊の測定と利用」
- 24pFA-13 名取寛顕「MEG実験2009、2010年データを用いた」

軽いスカラー粒子を媒介とするμ→eφ, φ →γγ崩壊事象の探索」

<u>MEGの検出器性能・将来計画 (25日)</u>

- 25aFB-13 藤井祐樹 「MEG実験 陽電子スペクトロメータ性能改善のスタディ」
- 25pFA-9 金子大輔「MEG実験 run2011 液体キセノン検出器の性能評価」
- 25pFA-10 澤田龍 「MEG実験LXeガンマ線検出器のアップグレードの為の研究」

Acknowledgment

PRL 107, 171801 (2011)

PHYSICAL REVIEW LETTERS

week ending 21 OCTOBER 2011

ご清聴ありがとうございました

New Limit on the Lepton-Flavor-Violating Decay $\mu^+ \rightarrow e^+ \gamma$

J. Adam,^{1,2} X. Bai,³ A. M. Baldini,^{4a} E. Baracchini,⁵ C. Bemporad,^{4a,4b} G. Boca,^{6a,6b} P. W. Cattaneo,^{6a} G. Cavoto,⁷
F. Cei,^{4a,4b} C. Cerri,^{4a} A. de Bari,^{6a,6b} M. De Gerone,^{8a,8b} T. Doke,⁹ S. Dussoni,^{8a,8b} J. Egger,¹ K. Fratini,^{8a,8b} Y. Fujii,³
L. Galli,^{4a,4b} G. Gallucci,^{4a,4b} F. Gatti,^{8a,8b} B. Golden,⁵ M. Grassi,^{4a} D. N. Grigoriev,¹⁰ T. Haruyama,¹¹ M. Hildebrandt,¹
Y. Hisamatsu,³ F. Ignatov,¹⁰ T. Iwamoto,³ P.-R. Kettle,¹ B.I. Khazin,¹⁰ O. Kiselev,¹ A. Korenchenko,¹² N. Kravchuk,¹²
A. Maki,¹¹ S. Mihara,¹¹ W. Molzon,⁵ T. Mori,³ D. Mzavia,^{12,*} H. Natori,^{3,1} D. Nicolò,^{4a,4b} H. Nishiguchi,¹¹
Y. Nishimura,^{3,†} W. Ootani,³ M. Panareo,^{13a,13b} A. Papa,¹ R. Pazzi,^{4a,4b,*} G. Piredda,⁷ A. Popov,¹⁰ F. Renga,^{7,1} S. Ritt,¹
M. Rossella,^{6a} R. Sawada,³ F. Sergiampietri,^{4a} G. Signorelli,^{4a} S. Suzuki,⁹ F. Tenchini,^{4a,4b} C. Topchyan,⁵ Y. Uchiyama,^{3,1}
R. Valle,^{8a,8b,‡} C. Voena,⁷ F. Xiao,⁵ S. Yamada,¹¹ A. Yamamoto,¹¹ S. Yamashita,³ Yu. V. Yudin,¹⁰ and D. Zanello⁷

(MEG Collaboration)

2012/3/24