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MEG and upgrade

e MEG will reach the goal statistics soon. Goal sensitivity = 5x10-13,
e Upgrade
e Aiming a sensitivity improvement by factor 10.
Several ideas for each sub-detectors
R&D and MC studies have been started

Proposal in the next year




MEG upgrade

M rate : 3x107 = 1x108, already possible at the mE5 beam line
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e+t - ~ transverse configuration

Single volume drift chamber,

- Stereo wire configuration

- Transverse or longitudinal configurations

- Smaller cell size

- More number of hits

- Less material than the present chambers

- Higher transmutation efficiency to TOF counter

Present Goal

Efficiency 41% 80%

350 keV 150 keV

10 mrad 5 mrad

11 mrad 5 mrad




Other ideas

Thin scintillator tiles
for e* tracking

-

TPC for et

kIEth1Et (25aFB13)

Segmented et timing counter
(3x3x3 cm3)
- Readout using PPD
- No need to protect from He gas
- Works in B-field
- More optimum arrangement
- Less pileup




Other ideas

-

_ Silicon vertex detector
“Active” target

Target made of scintillators




y detector upgrade




What is limiting the resolutions 7

We correct energy or position using the 1st conversion position, but...

» makes position dependence for shallow events

- The size of PMT (2 inch)

- Fluctuation of shower shape
PE— limits capability of the correction
using the 1st conversion position
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Upgrade concept

Present
PPD (MPPC, SiPM...)

Smaller PMT
testing in Pisa 1 inch

Multi-anode flat panel PMT
testing in KEK

e Replace PMTs on the inner face with smaller photo-sensors (PMT or PPD)
e Square shape — More uniform response

e Smallersize  — Better position resolution

Studies on PPD ===l &7 (25pFA8) 8




Possible configuration in final detector

Large PPD

e Sensor size: 12x12mm?Z

e (Ceramic base + PCB

PCB

Each inner PMT is replaced by 4x4=16 PPDs

e Number of sensors on inner face: up to 3456

Material thickness <a few % of Xo

e Si(5x10-3Xp), Ceramic base(7x10-3Xp), PCB(10-2Xp)
Heat load (each PPD requires one cable)
Sensor power consumption (~80mW in total)

Heat inflow from cable (~40W in total)

Only 20W increase compared to present heat load for inner PMTs (10W(PMT),
13W(cables))




Detection efficiency (MC)

Reduction of material

v

Efficiency improve by 9%




Imaging calorimeter

Ix24 — 36x93

~16 times the # of “pixels”

Performance of LXe detector with PPDs is being studied in MC

Preliminary results are shown in the following slides.
The results are already better than PMT MC using the
same reconstruction algorithm.

We are going try to develop new reconstruction
algorithms to take the advantage of the smaller size.




MC simulation

e MEG MC code is modified to simulate PPD configuration.

e Optical simulation
e Reflection on Si
e Record the pixel# for each photoelectrons. Used for WF simulation
e PPD waveform simulation
Single photoelectron response. The rise and decay constants are adjustable.
Dark count

Crosstalk

After-pulsing simulated waveforms

Saturation and recovering
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(Actual noise rate is much lower.):

Higher noise rate for these plots
just for a demonstration.




Response curve

Total Npixel = 57600
# of photoelectrons of each MPPC
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Position resolution (MC)

U resolution

depth < 3cm : PPD is better
depth > 3cm : Almost same resolution
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Depth <2cm

Energy resolution (MC)
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Summary

MEG will reach the goal statistics soon. Goal sensitivity = 5x10-13,
Upgrade
e Aiming a sensitivity improvement by factor 10.
Proposal in the next year
Several ideas for every part.
e R&D and MC studies have been already started
LXe y detector
e Smaller photo-sensors. (PPD, multi-anode PMT, smaller PMT)
e Simulation studies taking into account cross-talk, after-pulsing etc.
e Efficiency improvement by 9%.

e Position and energy resolutions will be improved.

e About a factor 2 improvement of each variable in the shallow part.

e More realistic MC including electronics noise to be done.



Back up



Typical parameters used for MC

e QE (reflection not included in this number) : 30 %
e Pixel size. 50 um

®  Npixel 57600 um

Leading edge 10 ns

Trailing edge 50 ns

Dead time 1 ns

Recovery time 50 ns
After pulse 50 ns(10%), 200 ns(5%)
Crosstalk 15%

Random noise 500 Hz

gain 2e6
DRS attenuation 1/3
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Radiation hardness

e Radiation produces defect in silicon bulk or Si/SiO2 interface which may deteriorate
PPD performance.

|.Nakamura, JPS meeting, Sep. 2008
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Possible advantage of PPD in
MEG LXe detector

Higher photon detection efficiency (yet to be proved)

High granularity and better uniformity with smaller sensor size and
better coverage.

Operation in magnetic field
Reduction of material on the inner face
Easier calibration using single photoelectron signals

Very low power consumption




Possible issues of PPD In
MEG LXe detector

Photon detection efficiency (PDE) for VUV light
Dark count

Optical crosstalk

After-pulsing

Radiation hardness

Dynamic range

Reflection on sensor surface

Sensor size




Dark count, crosstalk and after-pulsing

e Dark count
e Thermally generated free carriers produce dark counts
e 100k-10MHz per mm2 at room temperature.
e (Can be reduced at low temperature (10° reduction expected at LXe temperature)
e Dark rate below 100 Hz (3x3 mm?) is confirmed at LXe temperature.
e Crosstalk
e Hot carrier luminescence generate signal in adjacent pixels

e (Crosstalk probability : 10-20 %

e After-pulsing

e (Carriers trapped during primary avalanche and released during a several 100ns
triggering secondary avalanche(s).

e Pileup effects in case of MEG LXe detector.




Current performance
of the MEG LXe detector

Energy resolution : 1.7% (depth > 2 cm)

e Worse than MC(=1%). Some reasons are possible, not yet conclusive (e.g.
Errors in knowledge of optical properties, PMT instability...)

Position resolution : 5 mm

e (Consistent with MC

Time resolution : 67 psec

e Reasonable.

Detection efficiency : 65.5+1.5 %

e (Consistent with MC




Other possibilities : New PMT tests

Flat panel PMT for LXe 1”7 PMT for LXe

« Square shape e Test of a 1” square PMT

Smaller dead space, and more uniform _ Hamamatsu R8520-406
response
* Multi-anode

Readout each pixel (6x6 mm?2)

Can be used for the small detector concept.

Base-model, Hamamatsu H8500 series
- Metal channel dynode
- Dimension : 52 x 52 x 27.4 mm
- Multi anode (8 x 8 pixels)
— development of readout electronics is needed
-Gain: 1.5 x 106
- QE : 24% @ 420nm, room temperature
— Photocathode modification for LXe use

— smaller version of our
present PMTs

— gain ~ 10°
- QE ~20% in the VUV




Dynamic range

PPD response shows a non-linearity if number of detected photon is large relative
to total number of pixels

Optimal condition Np_e. < Npixel

Might be an issue for very shallow event for MEG LXe detector. At least we would
need a careful calibration.
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