

MEG実験 陽電子スペクトロメータ性能改善のスタディ

東京大学 藤井 祐樹 他 MEGコラボレーション 日本物理学会 第67回年次大会 2012年3月25日

MEG experiment

- Lepton flavor violating decay, $\mu\!\rightarrow\!\!\mathrm{e}\,\gamma$ is forbidden in the SM
 - But some of models beyond the SM predict visible $\mu\!\to\!\!e\,\gamma$ in the range of $10^{-12}\text{--}10^{-15}$ sensitivity
 - Current upper limit of the B(μ→eγ) is 2.4x10⁻¹², already in new physics region ! (MEG experiment, 2009+2010 data)
 - $\mu \rightarrow e \gamma$ is a good probe to search for new physics
- Background
 - Radiative muon decay (prompt)
 - Michel decay + overlapped γ (accidental)
- Experimental requirements
 - High resolution to suppress accidental background
 - High rate μ beam to get large statistics \rightarrow DC muon beam @ PSI

prompt

MEG experiment

cathode

- Xenon calorimeter (金子大輔: 25pFA9)
- Positron spectrometer
 - COBRA (COnstant Bending RAdius) magnet
 - gradient magnetic field to be optimized for 52.8 MeV signal e+
 - Drift chamber
 - high resolution tracker with low mass materials
 - Timing counter
 - precise timing measurement for e+

Upgrade MEG

- Spectrometer performance
 - current performance of the positron spectrometer

	2009	2010	2011 (preliminary)	
Momentum (%)	0.59 (core 80%)	0.61 (core 79%)	0.61 (core 86%)	e scattering
Angle (ϕ / θ) (mrad)	6.7(core)/9.4	7.2(core)/11.0	6.5(core)/10.8	
Vertex (Z/Y) (mm)	1.5/1.1	2.0/1.1	1.9/1.0	
T _{er} (ps)	146 (core)	126 (core)	133	DC V
ε _{e+} (%)	40	35	~40	Timing counter

• Upgrade plan

- MEG will finish physics data taking in a few years w/ current detectors (Goal sensitivity = 5×10^{-13})
- We are thinking about minor upgrade during a few years data taking (Short term upgrade)
 - Main issue : Improve the efficiency by reducing the amount of materials between DC and TC
- R&D for major upgrade is also started to improve the goal sensitivity ! (Long term upgrade)
 - Everything should be improved to get less background

Short term upgrade

- Short term upgrade plan
 - Thinner cable idea
 - There are 2 candidates for new cable
 - Expected ε_{e+} improvements w/ thinner cable are evaluated w/ MC simulation based on Geant 4 in some cases (2 candidates + duct modification + cabling)

		diameter (mm)	
	Radiall (present)	1.8	
	Bando	0.8	
	Junko	0.34	
-			10 11

Summary

- ε_{e+} can be improved in 5-9 % relatively by replacing cable and modifying cable duct
- Cabling also affect the efficiency → should be optimized
- The effect of signal attenuation w/ thinner cable is not yet evaluated → waveform simulation is needed

Long term upgrade

- We are also thinking major upgrade (澤田龍: 25pFA10)
 - Beam (muon rate : $3 \times 10^7 \rightarrow 1 \times 10^8$ already available @ beamline)
 - Target
 - Xenon calorimeter
 - Positron spectrometer
 - Additional detectors ? (e. g. Si vertex detector)
 - To get less background, everything should be improved
 - 2 times higher efficiency
 - 2 times better resolutions
 - Stable operation under 3 times higher muon rate
- New tracker is needed to achieve this goal !
 - Can we use TPC as one of the candidate for new tracker ?

TPC concept

• TPC is good for our aiming

- Good spacial resolution with light materials (Helium base)
- Single volume, wider coverage region
 - Much more # of measurement points (×10)
 - Good for higher efficiency

Longitudinal field

- Very popular and a lot of experience in other groups (e.g. ILC, ALICE, LHCb, , ...)
- Longer drift distance (Max ~100 cm)

Radial field

- Shorter drift distance (Max ~ 10 cm)
- Only a several experiments (will) use radial design (NA49, BoNuS)

Gas

• Gas mixture

• Some gas mixtures are simulated with Garfield

@ 1kV	Radiation Length	D⊤ um/√cm	D∟ um/√cm	v _D cm/us	Np /cm
He:CO2=70:30	0.09% X0	120	130	1.9	15
He:C2H6=70:30	0.07% X0	215	146	2.9	22
He:C2H6=50:50	0.10% X0	195	133	3.5	45

- Each case also have weak point & strong point
- Gas gain
 - Apply existing technology
 - Still under discussion

B field effect

Y (cm)

Magnetic field effect

- Drift line of ionized electron must be distorte by the COBRA magnetic field
- B-field uncertainty is lower than 0.2%
- Check how affect the B-field and its uncertai in analytic way
- Drift formula w/ magnetic field is defined below

 $\mathbf{u} = \frac{eE\tau/m}{1+(\omega\tau)^2} \left[\hat{\mathbf{E}} + \omega\tau(\hat{\mathbf{E}}\times\hat{\mathbf{B}}) + (\omega\tau)^2(\hat{\mathbf{E}}\cdot\hat{\mathbf{B}})\hat{\mathbf{B}} \right]$

- Shift the field alignment in 1mm or scale the field strength in 0.2 %
- Compare position and drift time difference between original field and modified field ...

red solid line : e- drift line E = 1 kV/cm

B field effect

• Magnetic	field effect				
	Radial/Long. shift in X	Radial/Long. shift in Y	Radial/Long. shift in Z	Radial/Long. scale 0.2%	
RMS x (um)	4.1 / 19	1.7 / 17	2.7 / 15	5.3 / 5.6	
RMS y (um)	3.2 / 18	2.1 / 15	1.7 / 13	3.8 / 21	
RMS z (um)	12 / 13	5.4 / 26	7.0 / 33	13 / 29	
RMS t (ns)	0.2 / 2.7	<0.1 / 1.9	0.2 / 2.1	0.3 / 3.8	
Drift formula w/ magnetic field is defined below					

$$\mathbf{u} = \frac{eE\tau/m}{1+(\omega\tau)^2} \left[\hat{\mathbf{E}} + \omega\tau(\hat{\mathbf{E}}\times\hat{\mathbf{B}}) + (\omega\tau)^2(\hat{\mathbf{E}}\cdot\hat{\mathbf{B}})\hat{\mathbf{B}} \right]$$

- Shift the field alignment in 1mm or scale the field strength in 0.2 %
- Compare position and drift time difference between original field and modified field ...
- Radial case is much better than Long. case !

- Spatial resolution
 - δR : ~ 200 um (achievable if $\delta t < 5$ ns)
 - δ(z-φ): ~ 500 um
- Momentum
 - very laugh estimation by assuming uniform B field
 - $\delta p = \sqrt{((\delta p_{Fit})^2 + (\delta p_{MAG})^2 + (\delta p_{MS})^2)}$
 - 350 keV (DC) \rightarrow 180 keV (TPC)
- Efficiency
 - Evaluated with Geant 4
 - 50 um thin mylar wall + 1 um cathode copper + He:CO2(70:30) + 3 gems (50um Kapton between 5 um copper) + 5um copper readout pad
 - 40 % (DC) → <mark>80 90 %</mark> (TPC)

- Multiplicity
 - How many hits in one trigger ? In the analysis or hardware point of view, Are they acceptable ?
 - Ionized electron travel about 10 cm in drift velocity ~ 3 cm/us
 - At least 3 us time window is needed to collect ionized electron generated at the farthest position

← How to reduce ?

Multiplicity

- How many hits in one trigger ? In the analysis or hardware point of view, Are they acceptable ?
- Ionized electron travel about 10 cm in drift velocity ~ 3 cm/us
- At least 3 us time window is needed to collect ionized electron generated at the farthest position

12年3月23日金曜日

• Multiplicity

- How many hits in one trigger ? In the analysis or hardware point of view, Are they acceptable ?
- Ionized electron travel about 10 cm in drift velocity ~ 3 cm/us
- At least 3 us time window is needed to collect ionized electrons generated at the farthest position

Summary

- Summary of TPC idea
 - We are planning "**MEG upgrade**" to get better sensitivity
 - The study of Helium based TPC started as one of candidate for our new tracker
 - Radial type field is less affected by uncertainty of magnetic field
 - Twice better efficiency & twice better momentum resolution are expected roughly
 - $\delta p: 350 \text{ keV} \rightarrow 180 \text{ keV}$
 - ε_{e+} : 40 % → <mark>80 90</mark> %
 - More realistic estimation (w/ reconstruction) is needed
 - R&D with prototype is necessary
 - There are still a lot of things to be discussed
 - Gas gain
 - Readout
 - Support structure
 - Any cooperates or suggestions are welcome !

Backup

12年3月23日金曜日

- energy loss @ inner TPC wall with copper cathode
 - case 1 : 50 um Mylar + 1 um Copper
 - case 2 : 50 um Mylar + 5 um Copper
- Calculate energy deposits in above 2 case in Geant4

• Pileup probability

- Some channels have pile up hits in time width of 1 trigger
- I calculated this effect by mixing 1 triggered signal event and overlapping Michel event assuming 1×10⁸ stopping muon rate
- Readout pad is divided by 2.5x5 mm2 in Z- ϕ plane (typical value for Multi layers gem)
- results
- pileup probability : (#of pileup hits)/(#of signal hits) ~ 6 %
- If we can divide each hits in 30 nsec accuracy, it can be reduced to 1/100

Cylindrical GEM for NA49-Future

GEM at CERN Leszek Ropelewski CERN PH-DT2-ST & TOTEM

-a precise determination of an event centrality (PSD)

-full acceptance for charged hadrons (<u>VTS</u>) and limited for identified hadrons (**TPCs**)

-a high event rate (**DAQ**)

-high precision measurements of inclusive spectra of identified hadrons (**TPCs+TOF**)

Cylindrical GEM Assembly 2 GEM foils

TACTIC and **BoNuS**

· insulating film / layer on cathode

· primary charge due to irradiation

· motion of charge due to electrical field

- may be due to growing coating on anode wires
- Strong electric field
 - huge #of avalanche in small region
 - space charge effect
- Malter effect

small surface conductivity

its removal rate

→ rate of charge build up higher than

Performance evaluation

