MEG実験2013と アップグレード計画の現状

岩本敏幸、他MEG Collaboration 東京大学素粒子物理国際研究センター 2013年9月22日

日本物理学会2013年秋季大会 高知大学 朝倉キャンパス

Physics Motivation of lepton flavor violation search

- Quark mixing is well described by CKM matrix in Standard Model.
- Neutrino oscillation is the first observed lepton flavor violating process
- No LFV is found yet in charged lepton
- SM + neutrino mass \Rightarrow tiny BR(($\mu \rightarrow e\gamma$)
- New physics like SUSY-GUT, SUSYseesaw, Extra Dimensions etc. predict large BR
- If muon g-2 discrepancy is really evidence for new physics, searches for μ -> eγ reveal that the "amount" of flavor violation in the new physics sector

Anomalous magnetic moment

The current situation of LFV

- Higgs boson ~ 126GeV
- Non observation of SUSY particles
- Even if slepton masses O(10TeV), large LFV may occur by renormalization group effects
- Complementary with direct search of new physics

MEC実験

- 1999 Proposal accepted by PSI
 - R&D, Detector Construction
- 2008 Physics run started
- International collaboration
 - Japan, Italy, Switzerland, Russia, and USA
 - ~60 physicists

Latest result

2009-2011 likelihood analysis

BR < 5.7x10⁻¹³ @ 90% **C.L.**, **PRL110**, 201801(2013)

- **4x** improved upper limit than previous MEG result (2.4×10^{-12}) , **20x** improved than previous experiment MEGA (1.2x10⁻¹¹)
 - 51 < EGamma < 55.5 MeV
 - 52.385 < EPositron(') < 55 MeV
 - $\pi \Theta(')_{e\gamma} < 27.2 \text{ mrad } (\cos \Theta_{e\gamma} < -0.99963)$
 - lt(')_{eγ}l < 244.3 ps

MEG2013

- Smooth physics run for 3.5 months
 - 6 DC modules are replaced, LXe purification for light yield recovery after MEG2012
- Calibrations: **CEX** by LXe 55MeV γ-ray for 10 days, e⁺ beam for 1 week
- Beam tests for upgrade (**RDC**) for 5 days
- MEG physics run finished successfully in Aug. 2013!

MEG analysis status

- An analysis of 2012+2013 data is going on.
- Data statistics will be doubled.
- The final result will be published next year.
 Stay tuned.
- Next -> Upgrade

La Thuile 2013 T. Mori

Upgrade Status

- 2013/Jan- Upgrade proposal presented, and accepted by PSI (arXiv:1301.7225)
- 2013-2015 Design & Construction
- 2015- Engineering run
- 2016 2018 Physics run

Upgrade Concept

LXe detector

Sensors

- What can be improved?
 - Higher muon beam rate
 - Larger acceptance
 - **Better resolutions**
 - Active background suppression

Expected Detector performance & Sensitivity

PDF parameters	Present MEG	Upgrade scenario
e ⁺ energy (keV)	306 (core)	130
$e^+ \theta$ (mrad)	9.4	5.3
$e^+ \phi$ (mrad)	8.7	3.7
e ⁺ vertex (mm) Z/Y(core)	2.4 / 1.2	1.6 / 0.7
$\gamma \text{ energy } (\%) (w < 2 \text{ cm})/(w > 2 \text{ cm})$	2.4 / 1.7	1.1 / 1.0
γ position (mm) $u/v/w$	5/5/6	2.6/2.2/5
γ -e ⁺ timing (ps)	122	84
Efficiency (%)		
trigger	≈ 99	≈ 99
γ	63	69
e ⁺	40	88

PSI Accelerator (muon beam rate)

- PSI also has a plan to upgrade the accelerator
 - Mainly for Mu3e experiment
- MEG experiment doesn't require the accelerator upgrade
 - We can quickly start whenever the detector upgrade finishes
 - $3.0 \times 10^7 \Rightarrow 7.0 \times 10^7 \,\mu/s$ stopped at the target are possible now

High Intensity Muon Beam (HIMB) projects

Drift chamber

- Single volume gaseous detector
- Stereo wires along z
- Finer granularity, better resolution
- Larger acceptance DC + TC

Challenging

Long wires : ~200cm High rate environment

Large number of hits

DC R&D Status

- Many prototypes
 - Single hit resolution
 - Aging
 - Mechanical design & optimize the length etc.

Single full-length wire prototype

New Pixelated Timing Counter

20pSL1 内山雄祐

• Array of ultra-fast plastic scintillator counters

Beam tests @ Frascati

20pSL2 西村美紀

- Single counter resolution ~70ps (90x40x5mm³, BC418)
- Ultimate resolution with multi-counter hit
 - Reduce electronics, calibration contribution, and counter resolution
 - Eight counters(90x40x5mm³, BC418) with MPPC and six counters with AdvanSiD are prepared (still to be optimized)
- Beam test condition @ Frascati
 - repetition rate : 50Hz
 - Bunch width : 10ns
 - Positron 48MeV
- Resolution improvement as a function of number of counters is confirmed!
 - Measured resolution 30~35ps

LXe Y-ray detector

- Small photon sensors (12x12mm² MPPC) at γ-ray incident face
 - ~4000ch MPPCs instead of 216 PMTs
 - Better position, energy resolutions at shallow events
 - Better identification of pile-up events
- Wider incident face, Change PMT angle at lateral face
 - To reduce shower leakage, better uniformity

Present

Upgraded

Computer Graphic

MPPC R&D Status

20pSL4 金子大輔

- MPPC development in cooperation with Hamamatsu
- Achieved
 - UV(~175nm) sensitivity: PDE >15%
 - Large area (12x12mm²), single photoelectron peak resolved
- Remaining issues
 - To reduce long tail (~200ns)

Series or Parallel connection?

- Original plan was a single sensor with 12x12mm² large area, but it had a long tail ~ 200ns
- To reduce a sensor capacitance, one sensor can be segmented into sectors, which will be connected in series.
- To simulate the concept works or not, 4 independent 6x6mm² samples are connected differently, and the waveforms are compared.
- Succeeded in obtaining shorter tail (30-50ns)!

Graph

DAQ/Trigger

- More channels, higher rate
 - XEC MPPC (inner face) : ~4000
 - XEC PMT (other faces) : 630
 - pTC MPPC : ~1200
 - DC : 2760 (1GHz bandwidth)
 - WaveDREAM
 - Higher density, compact
 - Waveform digitizer(DRS)
 +bias voltage supply
 +amplifier+simple trigger

Background tagging detectors 20pSL3 藤井祐樹

Tagging radiative muon decay events with ~50MeV γ (low energy e⁺ is emitted ~ 4MeV)

:0S(Oer

- Plastic scintillator + crystal with MPPC readout
- Beam test was performed at the end of MEG beam time in August with prototype

Summary

- The MEG experiment improved the BR($\mu \rightarrow e\gamma$) upper limit this year, 5.7x10⁻¹³ at 90% C.L.
- MEG physics run finished in Aug. 2013.
- The statistics will be doubled by adding 2012-2013 data, and the analysis is ongoing. The final result will be published next year. Stay tuned.
- MEG upgrade proposal is approved by PSI in 2013. R&D for detector upgrade is ongoing.
- The target sensitivity is 5x10⁻¹⁴, and data taking for three years starting from 2016.

S. Antusch et al, JHEP 0611:090(2006)

Likelihood analysis

• Fully frequentist approach (Feldman & Cousins) with profile likelihood ratio ordering

 $\begin{aligned} \mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{BG}}) &= \frac{e^{-N}}{N_{\text{obs}}!} e^{-[(N_{\text{RMD}} - \langle N_{\text{RMD}} \rangle)^2 / 2\sigma_{\text{RMD}}^2]} \\ &\times e^{-[(N_{\text{BG}} - \langle N_{\text{BG}} \rangle)^2 / 2\sigma_{\text{BG}}^2]} \prod_{i=1}^{N_{\text{obs}}} [N_{\text{sig}} S(\vec{x}_i) \\ &+ N_{\text{RMD}} R(\vec{x}_i) + N_{\text{BG}} B(\vec{x}_i)], \qquad \vec{x}_i = \{E_{\gamma}, E_e, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}\} \end{aligned}$

$$\lambda_p(N_{\text{sig}}) = \frac{\mathcal{L}(N_{\text{sig}}, \hat{N}_{\text{RMD}}(N_{\text{sig}}), \hat{N}_{\text{BG}}(N_{\text{sig}}))}{\mathcal{L}(\hat{N}_{\text{sig}}, \hat{N}_{\text{RMD}}, \hat{N}_{\text{BG}})},$$

New DC parameters

- 90% He + 10% Iso-Butane (iC₄H₁₀)
- Spatial resolution estimate ~130µm
- Momentum resolution ~ 130keV
- Angular resolution ~5mrad
- DC-TC matching eff. ~ 90%
- 10layers, square projective cells of 0.7cm, stereo angle of ~8 deg with respect to Z (z resolution ~ 7 times the transverse resolution)
- 25 and $40\mu m$ anode and field wires
- Total length 180-190cm, outer radium 29.2cm, 1380 anode/7500 field wires
- Positron hit rate density by MC simulation
 - Michel e+ generated over 4π at 1×10^8 µstop/s, max rate 45kHz/cm2
 - At 1x10⁵ gain and 7x10⁷ µstop/s, the maximum current is 6nA/cm(innermost wire), 3years of running, the maximum integrated charge is 0.4C/cm
 - Free radical polymerization is regarded as the dominating mechanism of wire chamber aging
- Pisa aging up to 0.5C/cm

Hit resolution estimate

- Arrange 3 cells with the central one displaced by Δ
 Measure t_i drift times, compute d_i drift distances
- For straight tracks it results independently of drift distance and angle (almost)

$$\frac{d_1 + d_3}{2} - d_2 = \pm \Delta$$
$$\sigma_{\Delta} \cong \sqrt{\frac{3}{2}} \sigma_d$$

• Measure single hit resolution averaged on all impact parameters and angles if $\sigma_{\Delta} << 2\Delta$

Scintillator Type

• Test BC418, 420, and 422 which is 90x40x5mm with 4MPPCs

Properties	BC-418	BC-420	BC-422
Light Output [% Anthracene]	67	64	55
Rise Time [ns]	0.5	0.5	0.35
Decay Time [ns]	1.4	1.5	1.6
Wavelength of Max. Emission [nm]	391	391	370
Bulk Light Attenuation Length [cm]	100	110	8

Properties of ultra-fast plastic scintillators from Saint-Gobain

Scintillator Type	Single Resolution (ps)
BC422	51.2
BC420	57.7
BC418	55.8

13/09/17

29

Calibration

- Important item for actual operation
- Laser calibration
 - Light pulse from a laser system
 - Hamamatsu PLP10-040
 - 70 ps width, 405 nm wavelength
 - Distribute via optical fibers
- Michel (track-based)
 - in-situ calibration using data itself
 - Develop a technique similar to position alignment
 - like Millipede or Linear-fit algorithms
 - to calibrate all channels simultaneously
- Finally, with RMD

Example I

"Accidental" and "real" AIF candidates in the same event:

13年9月22日日曜日