

2013年9月20日 日本物理学会2013年秋季大会@高知大学

素粒子物理国際研究センター 内山 雄祐 西村 美紀,大谷 航 Matteo De Gerone 他, MEG collaborators

<u>Motivation</u>

- Search for lepton-flavor-violating μ→eγ decay
 - Forbidden in SM
 - But enhanced in many BSM
 - MEG experiment
 - Searching for $\mu \rightarrow e\gamma$ down to O(10⁻¹³)
 - Completed data-taking Aug.2013
 - Analysis for final result ongoing

Upgrade

- Push down to O(10⁻¹⁴)
- Approved by PSI, R&D progress
- To start DAQ in 2016

Required to suppress accidental BG

<u>MEGアップグレードMEG</u>

upgrade design based on our long time experience

<u>SiPM in</u> MEG upgrade

高速プラスチックシンチレータ読み出し

 $\Box \sim$ 500 counters × 2ch (3000 SiPMs)

液体キセノンガンマ線検出器

ガンマ線入射面をPMTから
MPPCに置き換える
真空紫外光に有感
大型
電荷測定・時間測定
~4000ch

陽電子時間測定器

JPS 2013/Sep/20

Yusuke UCHIYAM /ICEPP The University of Tokya

□ 近紫外光

高精度時間測定

Previous results

- Achieved excellent resolution of 43 ps(σ) at relatively high over-voltage
- Observed deterioration at further over-voltage
 - ♦ Increase of dark noise, after pulsing

JPS 2013/Sep/20

Topics today

- Further study to understand the timing resolution of plastic scintillation counter from SiPM properties
- Detail comparison of different type of SiPMs
 - Recently, many manufacturers produce blue-sensitive SiPMs with 'p-on-n' structure
 - **New MPPCs** from Hamamatsu
 - □ New standard MPPC
 - □ New trench MPPC

Fig.10. Afterpulse probability compared with conventional MPPC and new structure MPPC

IEEE NSS/MIC 2012, VCI 2013 Id:180

Pursue ultimate timing performance of general scintillation counter

JPS 2013/Sep/20

SINGLE SENSOR

PROPERTIES

Test samples

Manufacturer	Model number	Туре		
НРК	S10362-33-050C	Conventional	Ceramic package	
	S10931-050P		Surface mount	
	S12572-050C(X)	New MPPC		
	S12572-025C(X)	(Stanuaru)	25µm pixel	
	S12652-050C(X)	Trench-type		
	3X3MM50UMLCT-B		Improved fill factor	
AdvanSiD		NUV type		
KETEK	PM3350 prototype A	Trench type		
SensL	MicroFB-30050-SMT	B-series with fast		
	MicroFB-30035-SMT		35µm pixel	

Common features: 3×3 mm² dimension, p-on-n structure

Breakdown voltages are lower by 5 V (standard), 15V (trench)

Snapshot of waveform

Confirmed less after-pulsing

JPS 2013/Sep/20

p.e. counting

 10^{2}

10

-0.01

Over-voltage ~2.0 V

1pe

0.01

Charge (10⁹e)

0

2pe

0.02

0pe

アフターパルスによ

り連続的な分布に

Old MPPC

0.02

0.03

0.03

0.01

Over-voltage ~2.5 V

 10^{3}

 10^{2}

-0.01

0.03

Dark count

Kept controlled up to high V_{over} due to the after-pulse suppression

JPS 2013/Sep/20

JPS 2013/Sep/20

Cross talk

- Measure relative PDE using UV-LED (~ scinti. Light)
- Calculate PDE from 0 p.e. probability

PDE with UV-LED

MEG

JPS 2013/Sep/20

PDF

Relative

HPK MPPCs show higher PDE for near-UV

- ✓ Extended PDE at higher V_{over} for new MPPCs
- ✓ Recovered fill factor for smaller pixel (25um)
- ✓ Trench-type MPPC also shows good PDE due to relatively high fill factor (55%, ~10% lower than standard type).
 But PDE is suppressed at shorter wave length (?)

SCINTILLATOR SIGNAL READOUT BY 3 MPPC SERIES CONNECTION

JPS 2013/Sep/20

3 series connection MEG

直列につないだ3つのセンサーを1チャンネル で読み出す Current [µA] 10 🕂 ch1 実効的に大面積化。検出光量の増加で分解 ch2 能をあげる。 両端に3倍のバイアス電圧を供給。 共通電流で個々のセンサーにかかる電圧が調 整される Over-voltageが自動的に大体そろう 10^{.1} 直列接続でキャパシタンス減少 シャープな波形 ゲイン減少 (~40%) 10^{-2} [in: 10.14 10^{3} Single SiPM (new MPPC 50 µm) 0.12 3 SiPMs in series 0.1 10^{2} 0.08 0.06 10 0.04 0.02 0 .⊣×10⁻⁹ -20 0 20 40 -0.01 [sec]

JPS 2013/Sep/20

Trench-type shows slightly poorer resolution

JPS 2013/Sep/20

Stable!

JPS 2013/Sep/20

Resolution

まとめ

• New MPPC

■ after pulseの大幅削減,動作領域の拡大
 ✓ パルス後の安定性向上。高計数率下測定で有効。
 ■ Trench-type,加えてcross talk抑制
 ■ Small pixelでもfill factor改善で同等のPDE

●時間測定の温度依存性

- New MPPCで悪化
- Trench-typeではKETEK, AdvanSiD同様安定

● シンチレータ時間分解能

■ p.e. statisticsがドミナント → PDEが重要
 ✓ 近紫外光で高いPDEを有する浜松MPPCで高分解能

■ New MPPCでは到達分解能に大幅な改善は見られない。

.

	After pulse, noise	Cross talk	PDE	Bias, Temp. stability	Time resolution	EG
Old MPPC	\triangle	▼	\bigcirc	\bigtriangleup	\bigcirc	
New MPPC (Standard)	\bigcirc	▼	\bigcirc	▼	\bigcirc	
New MPPC (25um)	\bigcirc	▼	\bigcirc	\bigtriangleup	\bigcirc	
New Trench MPPC	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
AdvanSiD NUV	▼	\bigcirc	▼	\bigcirc	\bigtriangleup	
KETEK	▼	\bigcirc	▼	\bigcirc	▼	-
					\bigcirc \land \checkmark	

時間分解能追求ならStandard MPPC (50 or 25 µm pixel) 総合性能ならTrench MPPC

JPS 2013/Sep/20

Yusuke UCHIYAMA/ICEPP The University of Tokyo

 \square

Good <

<u>Scintillator</u>

	Fast scintillators from Saint-Gobain				100)	\wedge					
properties	BC418	BC420	BC422	BC404	≒ 80) — — (\backslash				
Light Output [% Anthracene]	67	64	55	68	Outpu		/					
Rise Time [ns]	0.5	0.5	0.35	0.7	Light	,	/					
Decay Time [ns]	1.4	1.5	1.6	1.8	ative 40							
Wavelength [nm]	391	391	370	408	20	-				$\overline{\}$		
Attenuation Length [cm]	100	110	8	140		/						
	Used in the beam test		Used in this study (Best)	Present timing o	t MEG counte	340 36 r	80 38 V	30 40 Navelei	00 42 ngth, nr	20 44 n	0 46	0

- Faster scintillator gives higher time resolution
 - P.e. at the earliest part are only effective
 - Scintillation with fast response given in near-UV light

JPS 2013/Sep/20

Temp. vs Resolution

● バイアス一定の場合の分解能の温度依存性

 ✓ レファレンスカウンタは各温度でOver-voltageをそろえてある
 ● 新型では高バイアスをかけることで、到達分解 能は安定に得られる。

Temp. vs Resolution

Over voltage一定での分解能温度依存性。

✓ 新型(旧型)60mV/°C(55mV/°C)の温度係数を仮定して補正。

JPS 2013/Sep/20

JPS 2013/Sep/20

.

Shaping

• For precise time measurement

- Restore baseline
 by pole-zero
 cancellation, and
- Extract fast risepart

Excess noise factor

Gain

74

@23℃

