

MEG実験液体キセノン検出器の アップグレードに向けた マルチピクセル光センサーの開発

金子大輔、他MEGコラボレーション

液体キセノン検出器の改造 紫外線有感MPPCの開発 MPPCアセンブリ・読み出しR&D

μ ⁺→ e⁺ + γ 崩壊を探索

現在のMEG

今年3月に最新結果を発表した Br < 5.7×10⁻¹³ (90%C.L.) arXiv:1303.0754 Phys. Rev. Lett. に投稿中。 (藤井:29pRC-2)

2013年で第1期DAQ終了 5×10⁻¹³ (90% C.L.) に到達する見通し

改造後のMEG 感度の向上のため改造を予定している 感度1桁更新 10⁻¹⁴台に突入

> 新型タイミングカウンタの開発 (西村:26aHC-15)

(内山:26pRC-3)

Upgrade of Liquid Xenon Detector

紫外線有感MPPCの開発

浜松ホトニクスと協力し、新型MPPCを開発中 要求

・VUV(λ = 175±5 nm)に対する感度

現在市販されている製品は液体キセノ ンのシンチレーション光に対してほとん ど感度が無い。

前回の物理学会で 3×3 mm²サイズの 新型MPPCについてPDE11%と報告

・単一の素子として、12×12 mm²の大きさ

市販品は 3×3 mm² が最大。 チャンネル数の抑制。 12×12mm²で約4000ch。

NEW

12mm角・紫外線 高感度型MPPC

液体キセノン中

クライオスタット内模式図

試験項目

- ・gain測定 LEDを使用
- ・photon detection efficiency (PDE) 測定 α線源 ²⁴¹Am を使用

PDE = (検出した光電子数) (MPPCへ到達する光子数)

光学クロストーク・アフターパルスの 寄与を補正する

温度依存性(安定性) の測定

Performance of new MPPC prototype

12×12 mm²プロトタイプの スペクトル (LED光源)

1 p.e. が分離できる。

gain = Q(1 p.e.) - Q(pedestal)

crosstalk, after pulse の確率 Poisson分布との差から求める PDEの測定 3×3mm² プロトタイプとコンシステント 1.5 V の over voltage で PDE 17%

この素子を改造に採用すると、現在の検 出器と比較して検出できる合計の光電子 数は2,3割増加する。

Break-Down Voltage の温度依存性 測定されたBDVの温度係数 0.038 [V/K]

バイアス電圧を固定してMPPCのgain、PDEを測定

Waveform with Large MPPC

観測される波形の例 (α線光源)

大型のMPPCではキャパシタンスの増大に よって波形のテールが長くなっている。 *τ*~200 ns

pile upの増加、SN比の悪化を引き起こすため、できるだけシャープな波形を目指す。

対策

・クエンチ抵抗を可能な限り小さく

・プリアンプ入力インピーダンスを下げる

SIGNAL

GND layer

FR4

- 50 Ω インピーダンス

SIGNA

- MMCXコネクタで接続

MPPCアセンブリ・読み出しR&D MPPCから読み出しエレクトロニクスまでの各部設計開発

Development of PCB and feedthrough

チャンネル数の増加に対応するため、高密度で信号を通す事ができる フィードスルーが必要。プリント基板がフランジに刺さっているフィードス ルーを設計した。

エポキシ接着剤で固定 DN160 (ICF203) フランジ1個当り 6(枚) × 72 ch = 432 ch

このフランジが10個必要

プロトタイプを作成 - 気密性 (~ 10⁻⁴ Pa) - シグナルの伝導

- クロストーク (< 0.2%) 全て問題なし

Effects of PCB & long cable

実際の検出器では ・MPPCがPCBにマウントされている。 ・MPPCから読み出しエレキまで約10mの同軸ケーブルがある。

14

- MPPCパラメータの最適化 新技術MPPCの仕様を取りこむ (~1,2ヶ月)
- プロトタイプ試験 (来年春頃まで)
- 2014年実機製作開始
- MEG第2期は2016年の予定

MEG液体キセノン検出器の改造に用いるMPPCについて

12×12mm²の面積を持つプロトタイプを作成した

性能

・単一の光電子が分離可能

・キセノンのシンチレーション光に対するPDEは 以前の結果と合致、最大17%

・波形を短くする工夫が必要

実機の建造に必要な各部分の設計も進めている。

ご清聴ありがとうございました

概要

現在、MEG実験における液体キセノン検出器の改造 に使用する新型のMPPCを開発しており、 12×12mm²の面積をもつ新しい試作品が完成した。 この試作品は紫外線に高い感度があり、かつ単一光電 子を弁別可能であることがわかった。

MPPC and PCB assembly

feedthrough signal transmittance

Approximated Characteristic of Diode

$$I = I_0 \exp(kV - 1)$$

$$\downarrow$$

$$V = c_1 \ln I + c_2$$

Total current I $I = i \times (\# \text{ of pixel})$

 $R = 16 \times 3600 \times c_0$ $= 646 \text{ k}\Omega$

Make very weak LED flash where a few photons detected by MPPC.

Photon emission distribution from LED is expected to be Poisson distribution.

$$P(\lambda; k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \lambda = \ln(-n_0)$$

P:Probability at least once CT or AP occur *p*:Probability exactly once CT or AP occur

$$P = P(\lambda; 1) - n_1 = p + p^2 + p^3 + \cdots$$

A pulse is multiplied by this, due to CT & AP.

$$1 \to 1 + 2p + 3p^2 + \dots = \frac{1}{(1-p)^2}$$

1211-16CH-G-D 0.4

pre-amp waveform

Preamp setting	0	50	150	600	CR (150)
Charge	8.29	2.952	1.601	0.672	
$\sigma_{ m up}$ of charge	0.768	0.2384	0.1342	0.0587	
Resolution [%]	9.26	8.08	8.38	8.74	
10 – 90% [ns]	25.14	24.57	24.32	13.74	30.12
10 - peak [ns]	49.69	49.15	47.04	18.73	53.39
peak – 50% [ns]	137.64	149.88	150.01	153.72	164.55
Decay $ au$ [ns]	196.5	209.5	207	193	216

Hamamatsu new MPPC

When recent improvements on MPPC are Introduced, higher voltage can be applied.

Fig.10. Afterpulse probability compared with conventional MPPC and new structure MPPC

	Standard MPPC	New MPPC	
Dark Count	2.7 Mcps	1.7 Mcps	
After Pulses	> 100%	3%	
PDE	38%	43%	
Overvoltage Range	1.5 ~ 2.5 V	2 ~ 3.5 V	
Timing Resolution	250ps*1	140ps	

Ov	ervo	olta	de	=	2.5	١
•			9-			

→Higher PDE →Higher gain → better S/N or smaller pixel size → shorter pulse

increase of resistance at low temperature can be suppressed by metal quench resistance \downarrow

Fig.9. Temperature dependence of resistance compared with poly-Si and metal quenching resistor at 310 $k\Omega$ resistance

Radiation Hardness

- Modest radiation hardness is a kind of weak point of SiPM.
- Possible effects
 - Increase of dark noise
 - Gain degradation

Expected radiation in MEG upgrade

	MEG upgrade (3 years)	Threshold
Neutron	$7 \times 10^7 n/cm^2$	≈10 ⁹ <i>n</i> /cm ²
γ	0.3Gy	200Gy

Radiation hardness of SiPM should NOT be an issue in MEG upgrade.