

MEG実験アップグレードに向けたSiPMを用いた 新しい時間測定器の研究

西村美紀(東大) 内山雄祐(素セ)、大谷航(素セ)、M. de Gerone(PSI) 他 MEGコラボレーション 日本物理学会 2013年春季大会 広島大学

Most stringent upper limit of 5.7×10^{-13} 90% C.L. in this March. (arXiv:1303.0754) 29pRCo2:藤井

MEG I DAQ

(detail of MEG upgrade; arXiv:1301.7225)

Multiple hit scheme

 \Rightarrow the average time resolution :

30-35 PS (current ~76 ps)

<u>Requirement</u>

- Good single pixel resolution
 Single pixel R&D
- Hit many pixels

 Layout study with MC

Single Pixel Study

- Test Counter
 - SiPM
 - HAMAMATSU MPPC (S10362-33-050C, 3x3 mm2, 50µm-3600 pixels)
 - Fast plastic scintillator
 - 90x30x5mm, BC422
 - glued with optical grease (OKEN6262A)
- Source Sr90 (<2.28MeV, β-ray) Ch1
- Reference counter
 - $-5 \times 5 \times 5$ mm scintillator BC422
 - Readout by a MPPC
 - Trigger, Collimate
- Waveform digitizer sampling (DRS developed at PSI) @5GSPS
- Voltage amplifier developed by PSI (Gain~20, 600 MHz bandwidth)
- Shaping with high-pass filter & pole-zero cancellation
- Long cable (7.4m) before amplifier
- KEITHLEY Pico ammeter for MPPC bias (HV), Bias 218V~222V (for series connection)

Before shaping

After shaping

Analysis

- Signal time is picked-off by Constant-Fraction method (~10%)
 very leading-edge is relevant to precise timing
- *e* hit time is reconstructed by the average of times measured at the both ends
- Resolution of test counter is evaluated from $(t_o + t_1)/2 t_{ref}$
- Reconstruct hit position by $v \times (t_1 t_0)/2$ (v; scintillation light speed)

Analysis

- Signal time is picked-off by Constant-Fraction method (~10%)
 very leading-edge is relevant to precise timing
- *e* hit time is reconstructed by the average of times measured at the both ends
- Resolution of test counter is evaluated from $(t_o + t_1)/2 t_{ref}$
- Reconstruct hit position by $v \times (t_1 t_0)/2$ (v; scintillation light speed)

Good time resolution of 43 ps is obtained.

- Resolution improves with higher over-voltage
- then degraded because of higher dark noise
- Following test done at over-voltage =2.3 V/SiPMs

Other tests

- Position scan
- Optimization
 - Size
 - length(60-120mm), width(3.5-5 mm), height(30, 40 mm)
 - Scintillators
 - <u>BC422</u>, BC420, BC418
 - Manufacture of SiPM
 - HAMAMATSU, KETEK, AdvanSiD
 - Reflector
 - Aluminized Mylar, Teflon tape, <u>3M radiant mirror</u>

Single Pixel R&D with source is almost done!! We could obtain the satisfying result about single pixel.

Other tests

- Position scan
- Optimization
 - Size

Iongth(60.120mm) width(255mm) hoight(20.40m

Next stage is to test with beam.

- Manufacture of SiPM
 - HAMAMATSU, KETEK, AdvanSiD
- Reflector
 - Aluminized Mylar, Teflon tape, <u>3M radiant mirror</u>

Single Pixel R&D with source is almost done!! We could obtain the satisfying result about single pixel.

Beam test in PSI

Motivation

- Check the response to MIP
- Check if we can obtain consistent time resolution in the area
- Check the noise in the area
- Obtain data where the positrons penetrate two counters
- Pre-test for planned beam test with prototype detector.

Setup

Mu beam Counter 1 (C1): BC422 60x30x5mm, 3M wrapping Counter 2 (C2): BC422 90x30x5mm, 3M wrapping Light tight shielding with black tape.

Expected resolution from lab data is **~33ps** (C1 43.6 ps, C2 49.9 ps) no inter-counter jitter

Resolution

The combined resolution with position cut is 35 ps.

- The consistent resolution with lab data. (expected ~33ps)
- We can obtain better resolution by multiple hits. (single ~ 50 ps)
 *inter-counter jitter effect is not included

Noise

- Noise increased by $\sim 40\%$.
- Resolution depends on noise. (~ 2-3 ps/ mV)
 → Noise effect is not crucial.

- Pixelated timing counter with an improved timing resolution is under development for MEG upgrade.
 - Pixel with SiPM and fast plastic scintillator
- About single counter, good time resolution of 40-45 ps was obtained.
- Beam test
 - Though noise increase good resolution can be obtained.
 - Though jitter is not included, better resolution can be obtained by multiple hit.

BACK UP

- Search for charged lepton flavor violation (cLFV), $\mu \rightarrow e\gamma$
 - Forbidden in the SM
 - Some models predict large branching ratios
- Requirement
 - high intensity DC μ^+ beam
 - high rate tolerable positron detector
 - high performance gamma-ray detector
- Current best upper limit set by MEG: 5.7 × 10⁻¹³ (Phys. Rev. Lett. 107 (2011) 171801)

- <u>Physics BG</u>
- (radiative muon decay) •
- •<52.8MeV
- Any angle
- Time coincidence

- Accidental BG
- •<52.8MeV
- Any angle
- Random

$\sigma_{e\gamma} = 130 \text{ ps} \rightarrow 84 \text{ ps} (35\% \downarrow)$

track length: 75 ps→ 11 ps gamma side: 67 ps →76 ps Timing counter: 76ps → 30-35ps

MEG Resolution and efficiencies 東京大学 for MEG upgrade

PDF parameters	Present MEG	Upgrade scenario
e ⁺ energy (keV)	320	110-140
$e^+ \theta$ (mrad)	11	5-7
$e^+ \phi$ (mrad)	7.2	5-7
e^+ vertex Z/Y(core) (mm)	2.0/1.1	1.5/1.0
γ enegy (%) ($w > 2$ cm)	1.9	1.0
γ position (u, v, w) (mm)	5(u,v), 6(w)	2
γ -e ⁺ timing (ps)	122	75-90
Efficiency (%)		
trigger	≈ 99	≈ 9 9
γ reconstruction	59	59
e ⁺ reconstruction	40	85-90
event selection	80	85

Upgrade summary

Temperature dependence

- Relatively large temperature coeff. of breakdown voltage for MPPC (56mV/°C) might be an issue
 - Temp. variation in COBRA is a few °C
 - Time shift due to this is expected to be ~15 ps
 - doesn't seem a big issue
 - Possible solutions
 - Improve detector temp. stabilization
 - KETEK SiPM with lower temp. coeff. (<1%/°C)

Measured time shift vs over voltage

Pixel prototype

Parallel

We can't apply bias voltage to each MPPC. We should choose MPPCs which have the same characteristic. Capacitance 1 -> waveform wider

• Series

Automatically bias voltage is adjusted. Waveform is sharper.

Series connection gives us better results.

Manufacture of SiPM 😽 東京大学 (Preliminary)

• HAMAMATSU SiPMs give us the best resolution.

Size Optimization

- Single resolution is worse with larger pixel.
- However # of hit pixel increases with larger pixels.

Larger pixel is better.

(Effect of high rate is not included.)

Scintillator Type

• Test BC418, 420, and 422 which is 90x40x5mm with 4MPPCs

Properties	BC-418	BC-420	BC-422
Light Output [% Anthracene]	67	64	55
Rise Time [ns]	0.5	0.5	0.35
Decay Time [ns]	1.4	1.5	1.6
Wavelength of Max. Emission [nm]	391	391	370
Bulk Light Attenuation Length [cm]	100	110	8

Properties of ultra-fast plastic scintillators from Saint-Gobain

Scintillator Type	Single Resolution (ps)
BC422	51.2
BC420	57.7
BC418	55.8

Wrapping Test

Aluminized Mylar, Teflon tape, 3M radiant mirror film

Al Mylar

Teflon

Setup

BC422, 60x30x4.5 mm3 3 MPPCs in series each side 32 ns LEMO cable before preamp Amplifier 1 kOhm RC: 71.5 V, 2.23 uA

About all, position scanning was done.

3M

3M-film is the best for time resolution.

Double Hit

Can be ignored

Cost

Item	Cost (k€)
SiPMT-MPPC	68
Scintillator	10
Support structurer	20
Digitizers, HV	62
Cables	47
PCB	2
Connectors	17
Laser for calibration	20
Opgtical fibers	21
Reflectors	1
Total	267

Cost estimate for the new pixelated timing counter

Radial hardness

Results from the irradiation tests of Hamamatsu MPPC (S10362-33-050C) performed by the PSI SR group. Significant increase of dark current (top) and 15% gain degrease (middle) are observed, while the timing resolution is unchanged (bottom).

Courtesy of Dr. A. Stoykov of Paul Scherrer Institut.

MEG Another position reconstruction

 t_1

 Q_1

 t_0

 Q_0

 $Q \propto N_0 e^{-\frac{L \pm \overline{x}}{\lambda}}$

• $x = 0.5 \times \lambda \log \frac{Q_1}{Q_0}$ -> attenuation length

BC422

Beam test time line

Dec. 12	Dec. 13	Dec. 14	Dec. 15	Dec. 16
Decide beam test		Counter test in lab	Counter test in lab	
Dec. 17	Dec. 18	Dec. 19 Beam Test	Dec. 20 Beam Test	Dec. 21 Beam Test
Counter Setup (light shielding and set on stands so on)	Setup in area Check if counters work with cosmic.	Setup at beam line 18:40- Beam test start parallel	parallel configuration -4:00 15:50-16:15 parallel configuration	2:50-3:40 with one reference 4:40-5:00 staggered configuration
		configuration	17:25-19:00 cross configuration	5:10-6:30 (beam shutdown) with two references

Noise Correlation

Pulse height decreases by 13% (C1-1) and 21% (C2-1) Expected decreasing is 10 – 20 % (Lab: <2MeV beta from Sr90, Beam test: MIP)