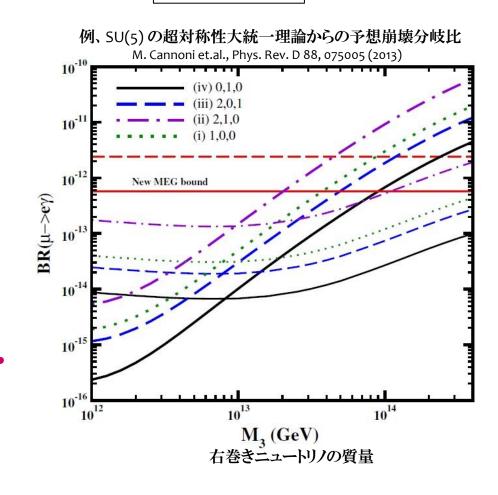


MEG II実験のためのSiPMを用いたポジトロン時間測定器の研究開発

西村美紀(東大) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone (Genova Univ.)、Flavio Gatti(Genova Univ.) 他 MEGコラボレーション 日本物理学会 2014年 年次大会 東海大学 湘南キャンパス

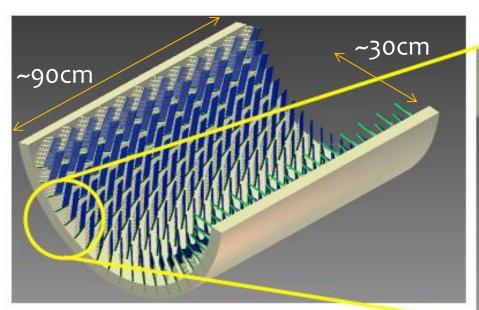

30pSD2 澤田

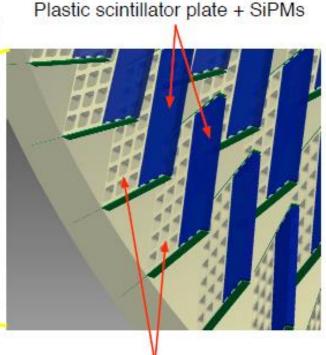
- 荷電レプトンフレーバー非保存
 現象、μ⁺ → e⁺γ崩壊の探索
 - 標準模型では、ほぼ起きない。
 - たくさんの有力な新理論(SUSYとか)から大きい崩壊分岐比が期待
- ・ 現在の崩壊分岐比への上限値は、MEG-I実験から、

 5.7×10^{-13} 90% C.L.


(Phys. Rev. Lett. 110(2013) 201801)

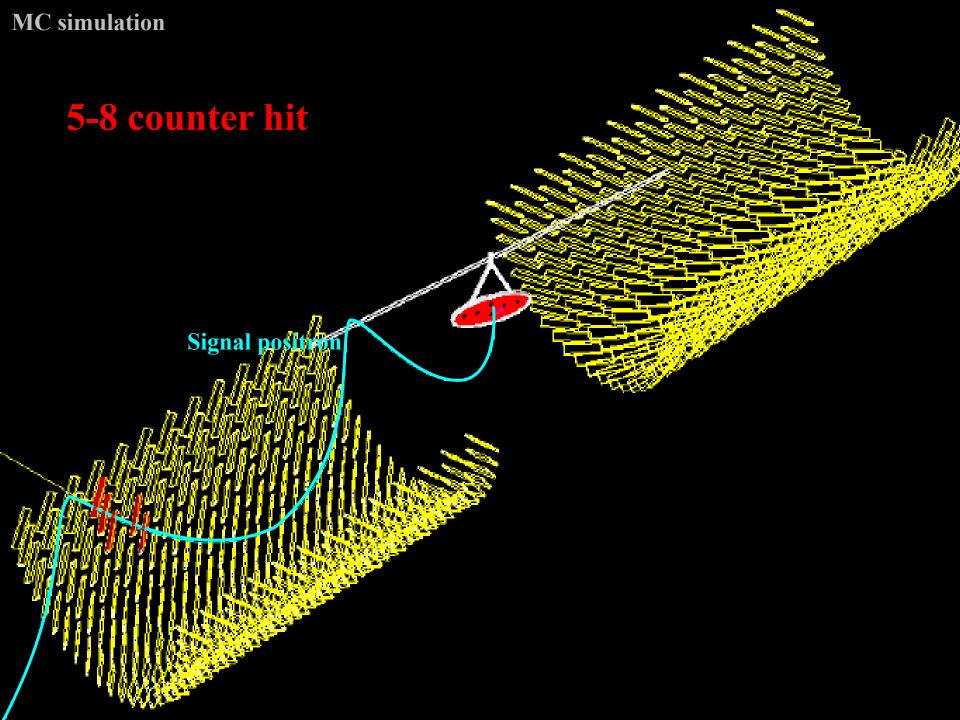
新物理が見えてくる領域





アップグレードをして、より高い感度での探索

MEG 細分型陽電子タイミングカウンダー

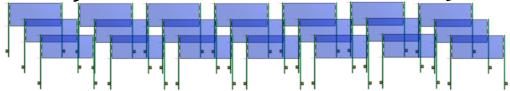


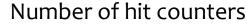
3 SiPMs Plastic scintillator connection PCB

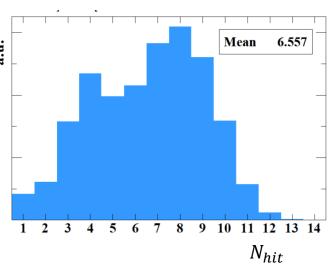
90-120x40x5 mmの小型カウンター

Support structure

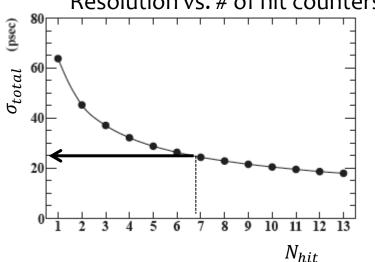
- ・ 3x3 mmの SiPMを直列で複数個 (片側3-6個)
- ・ 高速プラスチックシンチレーター カウンターを250個ずつ上流と下流に。


利点


MEG I: 80 cmのシンチレーターバー(PMT2つ)

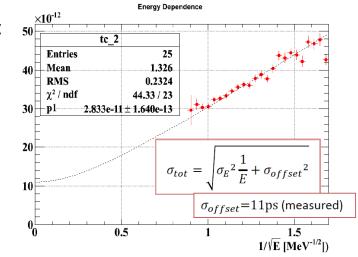


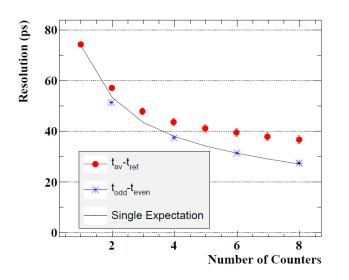
MEG II: 9 cmのシンチレーターカウンター



- たくさんのカウンターにあたる。
 - カウンターの時間情報を平均すれば、時 間分解能が向上する。
- パイルアップを減らせる。
 - アップグレードでビーム強度アップ
- 陽電子がどこを通ったか細かくわかる。

これまで


・ カウンター単体での試験

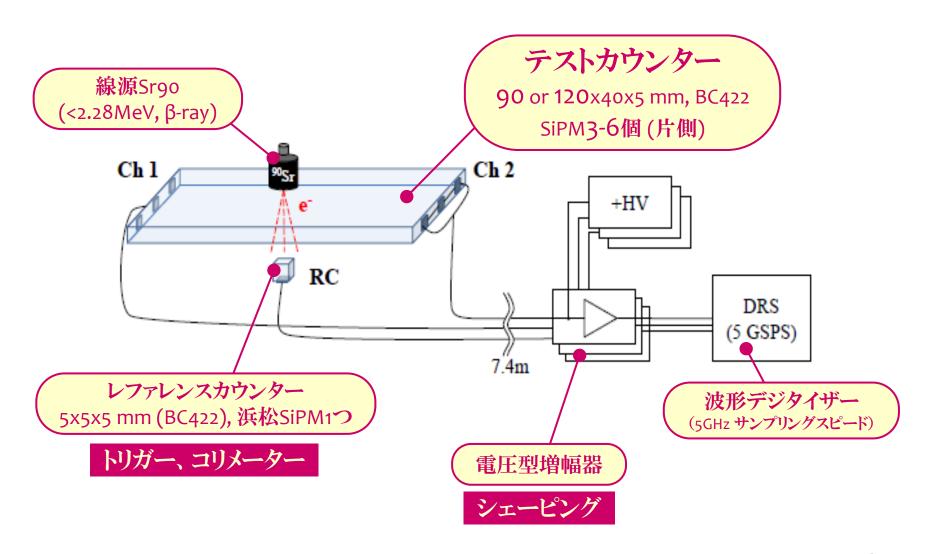

- 十分な性能を持っていることを確認(40-70 ps)
- <u>光電子の統計で時間分解能は決</u> まっている。

複数カウンターでのビームテスト

- <u>ヒットカウンターの増加によって時</u>間分解能が向上することを実証

ビームテストも終え、すでに良い時間分解能は得られることがわかっている。

これに加えて、カウンターのジオメトリーを最適化し、極限まで時間分解能を上げたい。


シンチレーター(BC422)、反射材(3Mフィルム)、カウンターの高さ(4 – 5 cm)については以前報告。

- カウンター単体のテストより、時間分解能は、光電子数で決まっている。
- ・ SiPMを増やすとカバレッジが増えて光電子数が アップ、時間分解能がよくなる。
- コストが許す限り増やすのがよい。

安いAdvanSiDのSiPMならたくさんつけられる。

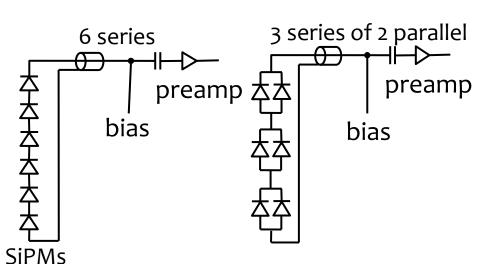
イタリアのメーカー、浜松のMPPCと同じように近紫外光に感度があるタイプ。

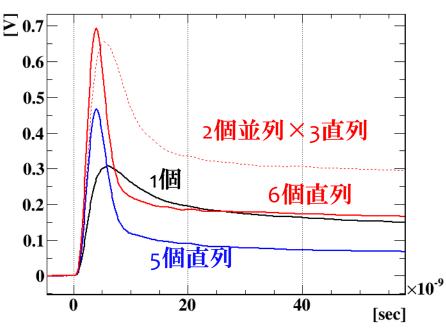
3x3 mm2, 50μm-3600 pixels

	Hamamatsu new type	Hamamatsu new type trench	AdvanSiD	
PDE	1.2	0.9	0.55	(相対値)
V bd (V)	72	55	25	
Dark count(MHz)	0.25	0.1	1	
Cross talk (%)	70	15	15	
Counter resolution (psec)	42	48	55	片側3個 60x30x5 mm BC 422
cost	高い	もっと高い	安い	

性能は浜松製がよい。

しかし、コスト面から、1つのカウンターに 浜松製は片側約3個までAdvanSiDでは片側6個まで。



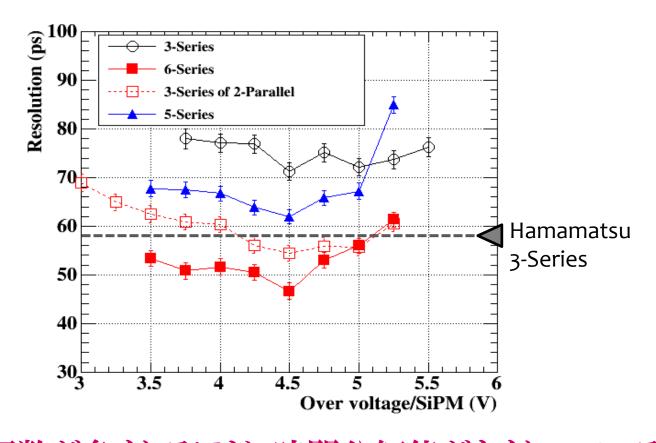


AdvanSiDでの測定

- 5個直列
- 6個直列
- 2個の並列を3個直列(計6個)
 - 一つ壊れても作動できる、低電圧

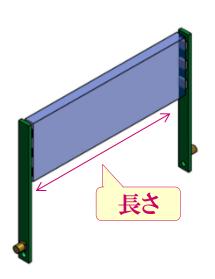
AdvanSiD Waveform

直列ではするどい波形。


SiPM数に応じて波高が大きくなる。

それぞれ超過電圧ごとに時間分解能を測定した。

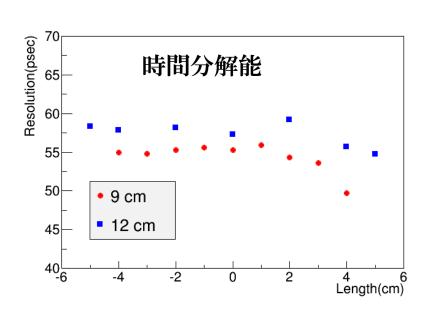
SiPMの個数が多くなるほど、時間分解能がよくなっている。 AdvanSiD 6個直列が一番良い時間分解能を持っている。

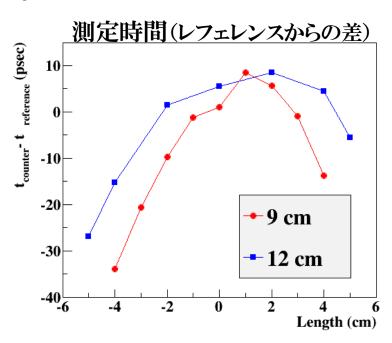


それぞれの利点

- 短い
 - カウンター単体の時間分解能がよい
 - パイルアップ、ダブルヒットが少ない
- 長い
 - シグナルイベントのカウンターヒット数が上がる。

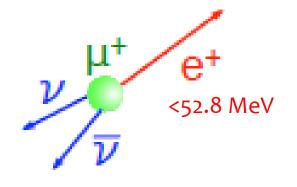
- 測定
 - 9 cm, 12 cm
- ・シミュレーション
 - 9 cm, 12 cm, 15 cm
 - カウンターの数は512個に固定
 - カウンターの中心の置く場所は固定

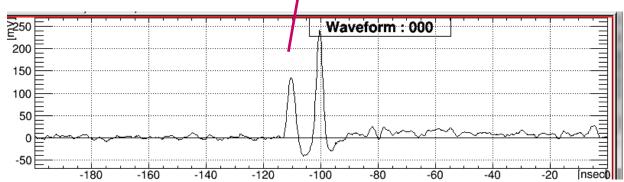




測定

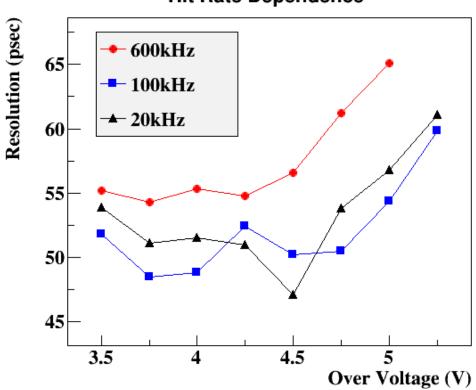
- AdvanSiD 6個直列、BC422
- 9 cmと12 cmのカウンター単体での性能の違いをポジションスキャンをして確認した。




長くなると、光量が減り時間分解能が悪くなる。~5 ps

- パイルアップ 通常のミューオン崩壊からの陽電子が偶然信号と重なる。
- ダブルヒット1つの粒子に起因する複数のヒット⇒少ない

分解能を悪くする or Inefficiencyになる。

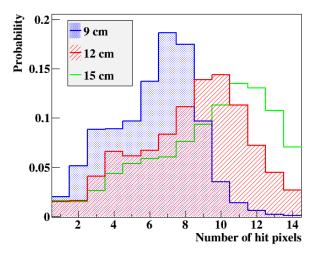


Hit rate of Michel positron from MC

	highest	average
9 cm	97 kHz	48 kHz
12 cm	122 kHz	64 kHz
15 cm	150 kHz	79 kHz

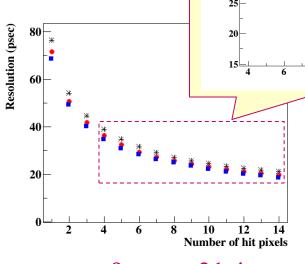
Hit Rate Dependence

長いカウンターでは、レートは増えるが小さい。 予想される100 kHzほどのレートでは、時間分解能は悪化しない。


9 cm12 cm

* 15 cm

Number of hit pixels


Resolution

Number of hit pixels (MC)

Average 9 cm, 6.2 12 cm, 8.4 15 cm, 9.4

resolution

9 cm, 31.4 ps 12 cm, 28.3 ps 15 cm, 28.1 ps

Resolution (psec)

9 cmから12 cmでは数psは向上がみられる。 15 cmではほとんど向上しない。

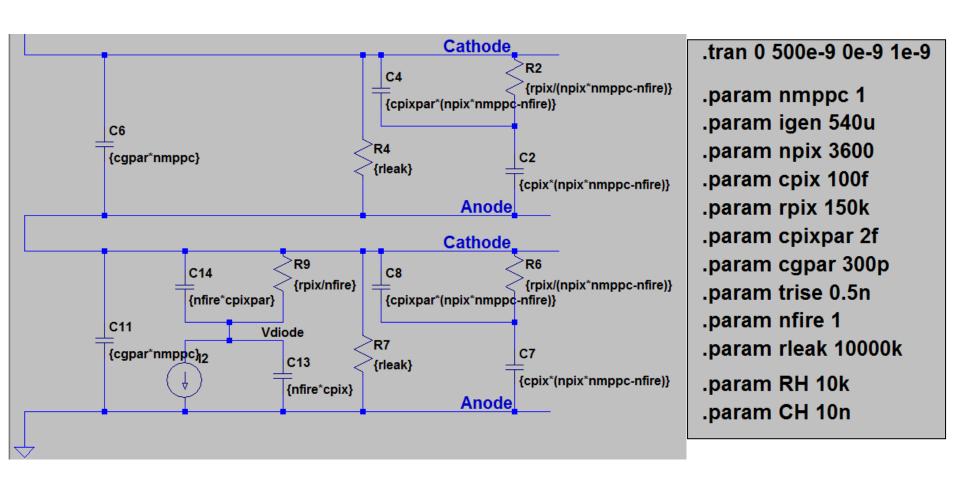
<u>9-12 cmが適切。</u>

まとめと今後

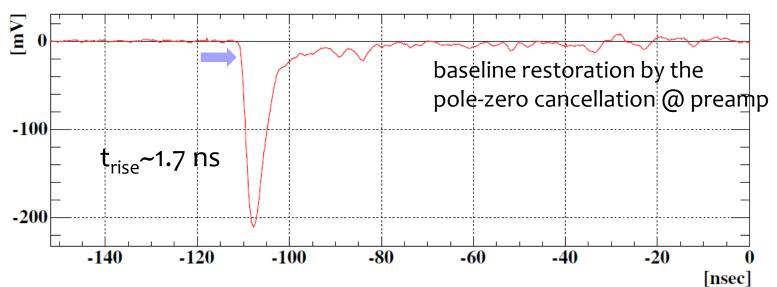
MEG IIのための新しいポジトロン時間測定器のカウンター最適化の研究を行った。

- SiPM
 - SiPMの数を増やすことによって時間分解能向上
 - 安価なAdvanSiD SiPMを6つ直列に配置することによって50 ps以下の時間分解能を達成。
 - 6500個発注
- 長さ
 - 9 cm、12 cm、(シミュレーションでは15 cm)の長さで比較を行った。
 - 9 cmと12 cmでは、大きな違いは見られず、どちらでも必要な性能 (~30 ps)を得られる。
 - 15 cm 以上だと、複数カウンターヒットでの良くなり具合が少なくなる。
 - 9-12 cmが良い。

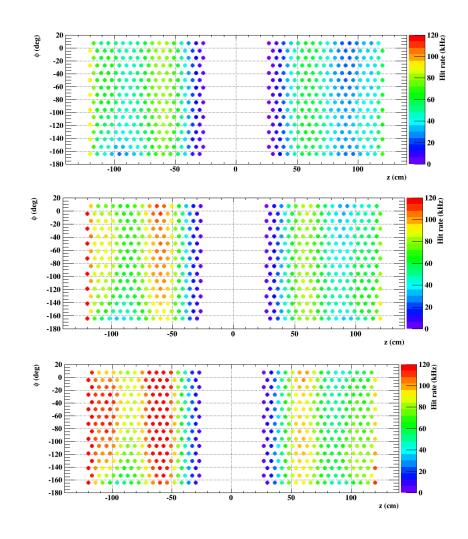
今後、ビームテストを経て、今年中に建設開始。



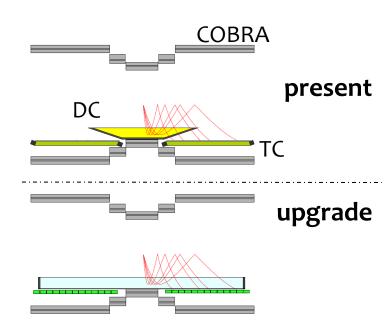
BACK UP



Analysis


- Signal time is picked-off by Constant-Fraction method (~10%)
 - very leading-edge is relevant to precise timing
- e hit time is reconstructed by the average of times measured at the both ends
- Resolution of test counter is evaluated from $(t_0 + t_1)/2 t_{ref}$
- Reconstruct hit position by $v \times (t_1 t_0)/2$ (v; scintillation light speed)

Michel positron

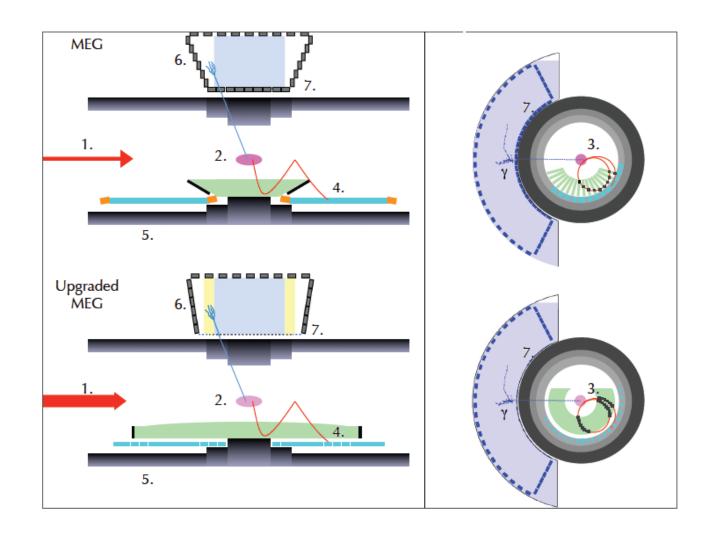


track length: 75 ps→ 11 ps

gamma side: 67 ps →76 ps

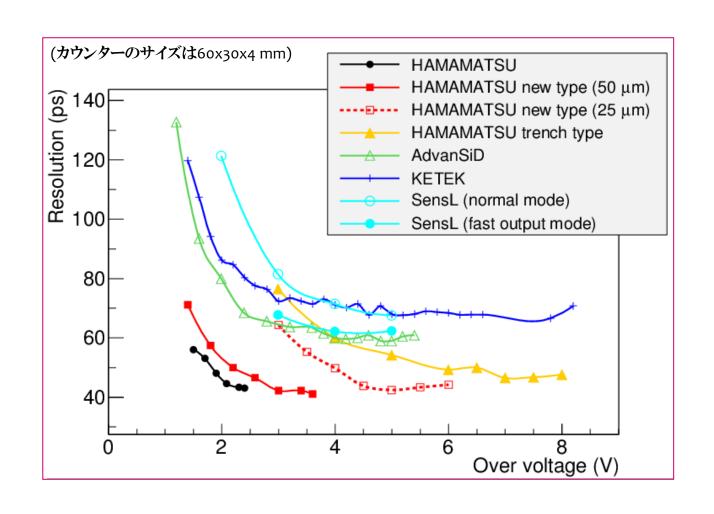
Timing counter: 76ps \rightarrow 30-35ps

$$\sigma_{e\gamma} =$$
 130 ps \rightarrow 84 ps (35% \downarrow)


MEGRESolution and efficiencies 東京大学 for MEG upgrade

PDF parameters	Present MEG	Upgrade scenario	
e ⁺ energy (keV)	320	110-140	
$e^+ \theta$ (mrad)	11	5-7	
$e^+ \phi$ (mrad)	7.2	5-7	
e ⁺ vertex Z/Y(core) (mm)	2.0/1.1	1.5/1.0	
γ enegy (%) ($w > 2$ cm)	1.9	1.0	
γ position (u, v, w) (mm)	5(u,v),6(w)	2	
γ -e ⁺ timing (ps)	122	75-90	
Efficiency (%)			
trigger	≈ 99	≈ 99	
γ reconstruction	59	59	
e+ reconstruction	40	85-90	
event selection	80	85	

Upgrade summary



Parameter	Requirement	Ha. no Trench	Ha. Tench *	Advansid
Overall Res (6 pix) ps	~30 ps	→ 30	expected better	32,8
Res Single Pixel Sr-90 ps		→ 42	48	55
Res Single Pixel BTF ps		→ 75		85
BV vs T	<10 mV / C			→ 24 mV/C
Transit time vs T	<0.2-0.3ps/C	5.5 ps/C [20-30 C](slope)	0.1-0.2 ps/C	0.1-0.7 ps/C [20-30 C] (plateau)
Transit time vs OV	<2-3 ps/V	-10 ps/V @ 30 C (slope)	+-1ps/V @ 30C (plateau > 4 V ov)	→1 ps/V @30C (plateau)
Amplitude vs OV	Highest	+36mV/V		+27mV/V
Dark Count MHz	Lowest	1 @4V ov 0.25 MHzV	0.5 @ 4V ov 0.1 MHz/V	3@4V ov 1MHz/V
Risetime		→1.6-1.9 (2-4Vov)	2.2ns (plateau)	→ 1.6 ns(plateau)
PDE(effective same Vov))	Highest	→ 1.2	0.9	0.55
Gain vs T	Lowest			1%/ C
Vbd	lowest	72V	55 V	→ 25V
Vbd spread	<1 V	1V	1 V	→70 mV (1000 pcs)
Cross talk		0.7 @ 4V ov	0.15@4V ov	→ 0.15@4V ov

MEG Mu-E-Gamma Collaboration 東京大学 SiPMのメーカーによる時間分解能の違い

