MEG実験 最終結果へ向けてのキャリ ブレーション及びデータ解析の現状

澤田 龍、他MEGコラボレーション 東京大学素粒子物理国際研究センター

> 2014年3月30日 東海大学湘南キャンパス 日本物理学会69回年次大会

$\mu^+ \rightarrow e^+ \gamma$

- CLFV Forbidden in SM
 - Little SM background through v oscillation : $Br(\mu^+ \rightarrow e^+\gamma) < 10^{-45}$
- So far, any CLFV signal has not been observed.
- Many new physics beyond SM (e.g. SUSY, Extra dimensions etc.) predict observable Br (10⁻¹⁴ 10⁻¹¹)
 - Discovery will be an unambiguous evidence of new physics.

μ g-2

東海大学湘南キャンパス 日本物理学会 2014年3月

Signal and background

Signal

澤田龍

- μ⁺ decay at rest
- 52.8MeV (half of M_{μ}) (E_{γ} , E_{e})
- Back-to-back $(\theta_{e\gamma}, \phi_{e\gamma})$
- Timing coincidence $(T_{e\gamma})$
- Accidental background
 - Michel decay e⁺ + random γ
 - Dominant background
 - Random timing, angle, E < 52.8MeV

- Radiative muon decay
 - $\mu^+ \rightarrow e^+ \nu \nu \gamma$
 - Timing coincident, not back-to back, E
 < 52.8MeV

東海大学湘南キャンパス日本物理学会 2014年3月

₽†

З

MEG Experiment PSI in Switzerland

Physics data taken in 2009-2013 澤田 龍

Latest result

normalization : 7.77×10¹²

$$Br(\mu^+ \rightarrow e^+ \gamma)$$

Uppler limit @ 90% C.L.	5.7×10 ⁻¹³
Best fit	-0.6×10 ⁻¹³
Sensitivity	7.7×10 ⁻¹³

arXiv:1303.0754 [hep-ex] Phys. Rev. Lett. 110, 201801 (2013)

Systematic uncertainties (in total 1% in UL)

- relative angle offsets
- correlations in e⁺ observables

東海大学湘南キャンパス 日本物理学会 2014年3月

New Physics constraints

SUSY-GUT SUSY-Seesaw G.Isidori, et al., PRD75(2007)115019 S. Antusch, et al., JHEP11(2006)090 BR ($\mu \rightarrow e \gamma$) x 10¹¹ 9.0 2.0 8.0 x 10¹¹ 10⁻⁸ SPS 1a m_{N1} = 10¹⁰ GeV, m_{N2} = 10¹¹ GeV 10⁻⁹ $m_{v1} = 10^{-5} \text{ eV}$ $0 \le |\theta_1| \le \pi/4$ 10⁻¹⁰ $0 \le |\theta_2| \le \pi/4$ BR ($\mu \rightarrow e \gamma$) $\theta_3 = 0$ 10⁻¹¹ MEG (2011 0.5 10⁻¹² **MEG (20**⁻ m_{N3} = 10¹⁴ Ge 0.4 **B-physics constraint** 10⁻¹³ 13 = 0.3 MEG (2011) 10⁻¹⁴ m_{N3} = 10¹³ GeV 0.2 $\theta_{13} = 10$ m_{N3} = 10¹² GeV 10⁻¹⁵ **MEG (2013)** 0.1 10⁻¹¹ 10⁻¹² 10⁻¹⁰ 10⁻⁸ 10⁻¹⁴ 10⁻⁹ 10⁻⁷ 10⁻¹³ BR ($\tau \rightarrow \mu \gamma$) 5 10 15 20 $\Delta\,a_{\mu}\,x\,10^{10}$ Large θ_{13} measured (~9°)! g-2 deviation* * a_µ(EXP):PRD73(2006)072,

東海大学湘南キャンパス 日本物理学会 2014年3月

au(SM):Hagiwara et al., JPG38(2011)085003

New data

Data taking finished in summer 2013

Since 2012, 15% higher beam rate is used

2009-2011 sensitivity 7.7×10⁻¹³

Observed limits and sensitivity

AIF Analysis

 $\Delta \mathbf{t}_{\gamma\text{-AIF}}$ [ns]

G

10⁻³,

- Annihilation in flight (AIF) is one of the main BG γ source.
 - Mainly come from the target and drift-chamber.
- New analysis was developed to match a vanished positron and a hit in LXe detector
- The matching variable will be used in the physics analysis as PDFs

東海大学湘南キャンパス 日本物理学会 2014年3月

B-field measurement

- Previous measurement done in 2006
 - Precision : 0.2%
 - Possible mis-alignment of sensors
 - It was done before installing materials around the magnet (e.g. LXe detector)
- New measurement
 - ~100k points 3D mapping inside the COBRA magnet
 - Rotation of the sensor head to measure 3 axis field and to cancel systematic errors.
 - Goal : 0.1% (300µm position precision is needed)

Status and future

- Data process status
 - Calibration of new data (2012, 2013) is almost finished.
 - Data reprocess will be finished in a couple of months.
- Preliminary results including the new data will be presented in this summer.

MEG II (upgrade)

Target Thinner target LXe Calorimeter Active target option Higher resolutions and efficiency with using smaller photo-sensors **Muon Beam** More than twice intense beam **Drift chamber** Higher tracking performance with long single tracking volume **Radiative Decay Counter Timing Counter** Identify gammas from Higher time resolution with muon radiative-decays highly segmented detector

11

MEG II sensitivity

Sensitivity

澤田 龍

Upgrade R&D

Drift chamber

- Geometrical parameters of 2π cylindrical chamber have been fixed.
- Prototype R&D on-going (Aging, resolution).

Xenon calorimeter

- Development of LXe MPPC is finished. Production of 600 MPPCs for a prototype is done.
- Mass test of MPPCs and the performance study of the calorimeter will be done with a prototype detector.

- Beam test of the active target will be done in this year.
- We succeeded in identifying gamma ryas from µ⁺ radiative-decays by using a newly developed Radiative Decay Counter in a beam test.

Summary

- For the final result, **MEG will double the data statistics** compared the previous analysis. Br $(\mu^+ \rightarrow e^+\gamma)$ sensitivity $\times 10^{13}$
 - Calibration for new data is done
 - Currently data are processed
 - Improvements
 - New AIF analysis to improve the sensitivity further (16%)
 - New B-field measurement to reduce the systematic uncertainty.
 - Preliminary result will be presented in this summer
- R&D and development of the upgrade detector are being done in parallel to start the data taking from 2016

MEG I	Latest result	7.7	
	Expectation	5	
	Further improvement	>16% improvement	
MEG II	Expectation	0.5	
	with optional detector	> 10-15% improvement	

MEG II performance

Resolution (Gaussian σ) and efficiencies for MEG upgrade

PDF parameters	Present MEG	Upgrade scenario
$\sigma_{E_{e^+}}$ (keV)	380	110
$e^+ \sigma_{\theta} (\mathrm{mrad})$	9	5
$e^+ \sigma_{\phi} \text{ (mrad)}$	11	5
$e^+ \sigma_Z / \sigma_Y$ (core) (mm)	2.0/1.0	1.2/0.7
$\frac{\sigma_{E_{\gamma}}}{E_{\gamma}}$ (%) w>2 cm	1.6	1.0
γ position at LXe $\sigma_{(u,v)}$ - σ_w (mm)	4	2
γ - e^+ timing (ps)	120	80
Efficiency (%)		
trigger	≈ 99	≈ 99
γ reconstruction	60	60
e^+ reconstruction	40	95
event selection	80	85