

MEG-II実験に向けた 背景事象ガンマ線同定用SiPM読み出し シンチレーション検出器の研究開発

東京大学 素粒子物理国際研究センター 藤井 祐樹, 他MEGコラボレーション 日本物理学会第69回年次大会 28th March 2014 @ 東海大学湘南キャンパス

1. RDCとは

2. ビーム試験結果

3. 実機作製に向けた研究

4. まとめ

MEG II

金子 28aTH-7

MEG II Goal sensitivity ~5x10⁻¹⁴

LXe detector Upgrade Inner face PMT → UV-sensitive SiPM Better energy & position resolutions

~7×10⁷ µ/s stopped on target already available @ PSI

This talk

Radiative Decay Counter (RDC) Tagging gamma BG from RMD → BG suppression

澤田 30pSD-2

MEG

- Finished data taking in August 2013

- Final Expected Sensitivity ~ 5×10⁻¹³

Pixelated Timing Counter Better Timing Resolution Less pileup Flexible design

西村 28aTH-5

Stereo Wire Drift Chamber Higher efficiency Less MS, BG γ generation High granularity

Upgrade proposal was already approved by Paul Scherrer Institut (arXiv:1301.7225)

Radiative Decay Counter (RDC)の目的

- ガンマ線の主な背景事象源であるRadiative Muon Decay (RMD)事象の積極タグ
- ビーム軸状に低運動量陽電子同定用の検出器を設置
- シミュレーションからは40%の合計背景事象低減が期待される

E_v > 48 MeV

Beam Test

Beam Test

Beam Test

- 期待通りにRMD事象を検出する事ができた
- ただし、MEG II相当のビーム強度では半分近くの 事象でパイルアップが見られた
 - 波形が重なると陽電子エネルギーが正しく再構成できなくなる
 - ・ → 解析の工夫や検出器改善により出来るだけ 減らす
- 実機作成に向けて
 - 実機サイズのプラシンを試験
 - 約3倍の長さで性能に問題無いか
 - GSO以外の結晶(LYSO)を試験
 - 上記パイルアップ対策に有効な可能性
 - ・ 上流用のRDC試験
 - シンチレーションファイバ

	NaI(Tl)	GSO	LYSO
Density, g/cm ³	3.67	6.71	71
Att. length, cm	2.6	1.38	1.12
Decay const., ns	230	30-60	41
Max emission, nm	415	430	420
Relative LY	100	20	70-80

2014年3月28日

Long PS Prototype

Long PS Prototype

- GSOより安価な場合も
- 光量がGSOより多く, 減衰時間も短い
- Lu自己崩壊のガンマ線は問題になるか
 - トリガーはプラシンでかけるので影響は小さい
- 光量のnon-uniformityが報告されている
 - 2cm³のサイズでは問題無い?

Setup for the crystal comparison

LYSO/GSO Comparison

- LYSOでは期待通り波形の立ち上がり, 立ち下がりが速い

- パイルアップ分離に有利
- LYSOで観測された光電子数はGSOのおよそ3倍
 (MPPC印加電圧の違いによるPDEの違いを含む)
 GSOよりも良い分解能が期待できる

2014年3月28日

LYSO/GSO Comparison

LYSOが約1.5倍ほど良い分解能を示す 相対的な光電子数の違いとは無矛盾 (絶対数では光電子数からの予想より悪い)

2014年3月28日

日本物理学会第69回年次会@東海大学湘南キャンパス

12

- MEG II実験の感度を最大化するため, RMD起源ガンマ線同定用検出器を開発している
 - 40%の背景事象低減 from simulation study
 - 小型プロトタイプを用いたビーム試験でもsimulationとconsistentな結果
- 実機作製に向けたさらなる研究を行っている
- ~20cmのプラスチックシンチレータでも十分な時間分解能が得られた (<100 ps @ 1 MeV)
- GSOに代わる結晶シンチとしてLYSOを用いる事を検討している
 - 2cm³の単体試験で十分な性能
 - 低コスト,大きな問題は今の所ナシ
 - GSOに対して約1.5倍良い分解能が得られた
 - 光量はGSOの2-3倍程度+よりシャープな波形
 - 波形フィットによるパイルアップ分離が可能
- 今後の計画
 - より詳細な解析やsimulationによるパイルアップ分離を試験
 - 検出器較正手段の確立
 - 実機の設計及び作製

2014年3月28日

Backup

2014年3月28日

15

- ニュートリノセクターではレプトンの世代間の破れあり
- 荷電レプトンセクター? (Charged Lepton Flavor Violation: CLFV)
 - 標準模型で禁止, ニュートリノ振動を入れても崩壊確率~O(10-50)
 - CLFV過程は未発見,実験からは上限値のみ与えられている

$\mu^+ \rightarrow e^+ \gamma$	< 2.4×10 ⁻¹² @ 90% C.L.	published by MEG in 2011
$\mu^+ \rightarrow e^+ e^+ e^-$	< 1.0×10 ⁻¹² @ 90% C.L.	SINDRUM
μ -N \rightarrow e-N	< 7×10 ⁻¹³ @ 90% C.L.	SINDRUM II

- 多くのBSMではCLFVの大きな崩壊分岐比が予言
 - SUSY-GUT, SUSY-Seesaw, Extra dimension, etc.
 - μ→eγ崩壊は今の上限値に近い崩壊分岐比を持つ可能性
 - CLFV過程である $\mu^+ \rightarrow e^+ \gamma$ 崩壊発見はBSMの確かな証拠となる
 - ミューオンg-2や複数CLFV探索により相補的な模型検証が可能
- 2体崩壊によるシンプルなキネマティクス
 - $(E_e = E_r = m_\mu/2 = 52.8 \text{ MeV}) \& (T_e = T_r) \& (\Theta_{er} = 180^\circ)$

- ・考えられる背景事象は2種類
 - ミューオン輻射崩壊 (Radiative Muon Decay: RMD): μ→evvr
 - 2体崩壊で無いため, E_r, E_e, Θ_{er}の精密測定によりオーダー10⁻¹⁵まで低減可能
 - 偶発的背景事象 (Accidental): 近年の $\mu \rightarrow e \gamma$ 探索実験において支配的
 - Michel崩壊からの陽電子とRMD, AIF等によるγ線の偶発的重なり
 - 時間差,角度差の精密測定,エネルギー高精度測定により低減
 - Accidentalの分岐比は瞬間ミューオンレート(R_µ)に比例
 - ⇒ 直流 (DC) ミューオンが有効

 $B_{\rm acc} = R_{\mu} \cdot f_{\rm e}^{0} \cdot f_{\gamma}^{0} \cdot \left(\frac{\mathrm{d}\omega_{\rm e\gamma}}{4\pi}\right) \cdot \left(2\delta t_{\rm e\gamma}\right),\tag{1.20}$

- スイス・ポールシェラー研究所(PSI)で2008年, 物理ラン開始
- 約60人の研究者による国際共同実験(日・瑞西・伊・米・露)
- 偶発的背景事象を低減するための様々な工夫
 - ・世界最大強度のDCミューオン源 @ PSI

- 高分解能・高検出効率の液体キセノンを用いたガンマ線検出器を開発
- 高レート下で高分解能の陽電子検出を実現するため,
 - 特殊な勾配磁場を超伝導磁石(COBRA磁石)で作る
 - ・超低物質量Tracker ⇒ 陽電子多重散乱, ガンマ背景事象生成を抑制
 - 全データを波形で取得 ⇒ 解析でパイルアップ分離可能
- 2011年には、2009-2010取得データにより、これまでの上限値を5倍更新
 - 信号事象の超過無し, B(µ+→e+γ) < 2.4×10⁻¹² (90% C.L.)の上限値のみ与えた
 - 新物理で期待される領域に大きく踏み込んだ ⇒ いつ信号が発見されてもおかしくない ?

MEG Experiment

Observables in Physics Analysis

Table 5.7: Performance summary.

Variable	2009	2010	2011
Gamma Resolutions			
E_{γ} (%) 1	.9 $(w > 2 \text{ cm}),$	$1.9 \ (w > 2 \ cm),$	$1.7 \ (w > 2 \ {\rm cm}),$
2	$2.4 \ (w < 2 \ {\rm cm})$	$2.4 \ (w < 2 \ {\rm cm})$	$2.4 \ (w < 2 \ {\rm cm})$
$u_{\gamma}, v_{\gamma} \text{ (mm)}$	5	5	5
$w_{\gamma} (\mathrm{mm})$	6	6	6
t_{γ} (ps)	96	67	67
Positron Resolutions			
$E_{\rm e}~({\rm MeV})$	0.31	0.32	0.31
$\phi_{\rm e} \ ({\rm mrad})$	6.6	7.2	7.5
$\theta_{\rm e} ({\rm mrad})$	9.4	11.0	10.6
$y_{\rm e} \ ({\rm mm})$	1.1 (core)	1.1 (core)	1.2 (core)
$z_{\rm e} ({\rm mm})$	1.1	1.7	1.9
$t_{\rm e}~({\rm ps})$	107	107	107
Combined Resolutions			
$\phi_{ m e\gamma}$ (mrad) *パラメータ相関補正	E後 8.9	9.0	8.9
$\theta_{e\gamma}$ (mrad)	15.0	16.1	16.2
$t_{\rm e\gamma} ({\rm ps})$	156	123	127
Efficiency			
ϵ_{γ} (%)	63	63	63
$\epsilon_{\rm e}$ (%)	28	35	31
$\epsilon_{\rm trg}$ (%)	91	92	97

Upgrade Plan

- MEG実験は新物理に感度のある重要な領域の探索を実現している
- 現MEGは背景事象による感度改善度合いの悪化が見え始めている
 - 統計を増やすだけではこれ以上の感度改善は難しい ⇒ 高感度化には背景事象低減が必要不可欠
- 一方で新物理が存在すれば信号はいつ発見されてもおかしくない
- そこで, さらなる感度改善のため検出器大幅改良を行う
- 目標到達感度は現MEGと比して約10倍
- どのように達成するか?
 - PSIのミューオン強度を最大限活用 (10⁸ Hzまで到達可能)
 - 検出器レート耐性を上げる
 - 背景事象低減のために全ての検出器性能を向上する
 - 各検出器改良で, E_{γ} , E_{e} , $t_{e\gamma}$, $\theta_{e\gamma}$ の分解能を倍改善する
 - さらなる背景事象低減
 - 背景事象源となる物質量低減
 - 積極的な背景事象同定

2014年3月28日

日本物理学会第69回年次会@東海大学湘南キャンパス

MEG upgradeの目標感度 arXiv:1301.7225

入射面のPMTをSiPMに変更 ⇒ 浅い事象でのエネルギー 及び位置分解能大幅改善が期 待される 12×12mm²で約4000個の SiPM

PMT配置を最適化し, ガンマ線の エネルギーリークを抑える → 10%の検出効率改善が期待

検出器入射面の様子

SiPMを用いた場合の浅い事象での エネルギー分解能の改善具合(MC)

アップグレード後 (CG)

SiPMを用いた場合の浅い事象での ガンマ線位置分解能の改善具合(MC)

2014年3月28日

Tracker Upgrade (1/2)

- ・一体型のガス検出器
 - ・モジュールの壁による物質量減
- ・ビーム軸方向に広い領域をカバー
 - ・TCまでの物質量減
 - ・TC直前までトラッキング
- ・ヒット数の大幅増 (平均25 ⇒ ~60)
 - ・ヒット数増による分解能改善
- ・ワイヤーを立体交差させる事でz方 向の位置を再構成する

フレームやプリアンプなどに当たり飛跡が曲げられ

てしまう。

Expected Performance

 Image: Second state of the system
 Momentum -130 keV (350 keV)

 Angular -5 mrad ; ~5mrad

 (9mrad ; 11mrad)

 Vertex -1.2 mm ; ~0.7 mm

 (1.8 mm ; 1.1 mm)

 DC-TC matching eff. ~ 90 % (41%)

 日本物理学会第69回年次会 @ 東海大学湘南キャンパス

Timing Counter Upgrade (1/2)

2014年3月28日