<u>µ⁺ → e⁺γ 探索実験</u> MEG II の建設状況

(Construction status of the MEG II) experiment searching for $\mu^+ \rightarrow e^+\gamma$)

25/September/2015 日本物理学会大2015秋季大会@大阪市立大学

他 MEG II collaboration

<u>Abstract</u>

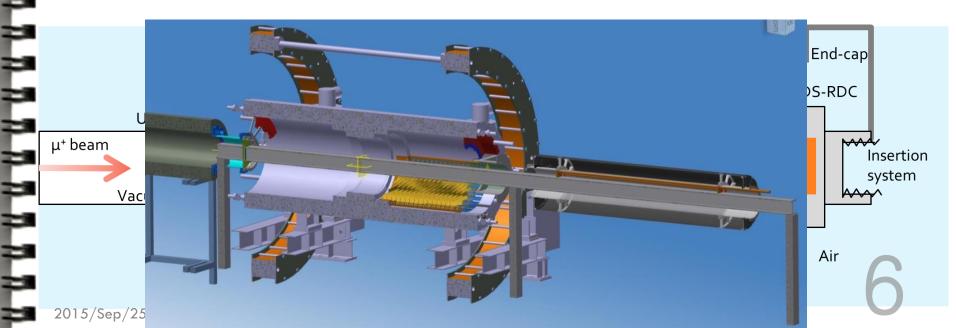
- 1. MEG II is upgrade of MEG experiment, searching for $\mu \rightarrow e\gamma$
- 2. All the detectors are now under construction
- To carry out a 'pre'-engineering run in 2015
- 4. Toward starting data taking in 2016

<u>Next μ→eγ Experiment</u>

- Aim at sensitivity of O(10⁻¹⁴)
 - x10 improvement from MEG
- By exploiting the full beam power available today,
 - ~10⁸ μ^{+}/s at PSI $\pi E5$
- By upgrading the MEG detector
 - Keep experimental concept
 - in short (~5 years), at low cost

2015/Sep/25 @ JPS 2015 Autumn

<u>MEG II</u>


Keep 3 keys of MEG
1. World's most intense DC μ beam @ PSI
2. Innovative liquid xenon γ-ray detector
3. Gradient B-field e⁺-spectrometer

Double beam intensity,
Double efficiency,
Suppress BG factor ~30
Halve every resolution,
Add new detector to identify BG

Where We Will Be 4×10-14 500 Start the project. Conceptual designing. 2012 Submit the proposal to PSI MEGhsitivity DAQ Proposal approval. 375 2013 R&D 2014 Construction partially start. Detector construction. 250 Detector commissioning. 2015 Upgraded MEG Pre-engineering run. Full engineering run. 2016 Data taking. 125 2017,2018 2.4×10⁻¹² k factor 2008 (×10¹¹) 2010 2012+2013 2017 Yusuke UCHIYAMA/ The University of Tokyo 2015/Sep/25 @ JPS 2015 Autumn

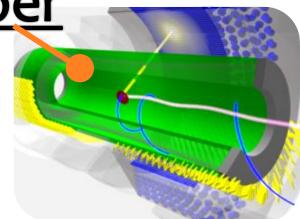
<u>Goal of 2015</u>

- Check the mechanical integrity & functionality of the MEG-II upgrade design
 - Enable design corrections & modifications well before
 Engineering run in 2016
- Enable beam optimization & setup of new target
- Aim at Michel beam test of DS Timing Counter system with limited readout

<u>New Drift Chamber</u>

Stereo-wire low-mass drift chamber

- 1200 sense wires, $1.7 \times 10^{-3} X_0$ per track


Partially wired 'mock-up chamber' was built and being installed today.

- with HV & gas system
- for mechanical integration & operation test

• Final chamber under construction.

- Wiring has been started (several months delay), takes ~half year.
- Full system will be ready by Aug. 2016. (~5 months delay)

Sense wire: 20 µm W Field wire: 40 µm Al

Inner foil

(20 µm Al-Mylar)

Carbon-fiber Outer frame

(2 mm^t)

1 (1)

A/ The University of Tokyo

Target System

New μ-stopping target system new spectrometer
1st MEG-II target (only for 2015)

µ⁺ bean

Target material under study

- Deformation issue in MEG I
- 1. Polyethylene (140 μm)
- 2. Beryllium (90 μm)
- 3. Scintillator film (130 μm)

140 µm Polyethylene Rohacell + carbon frame

Measuring position (physics mode)

Yusuke UCHIYAMA/ The University of Tokyo

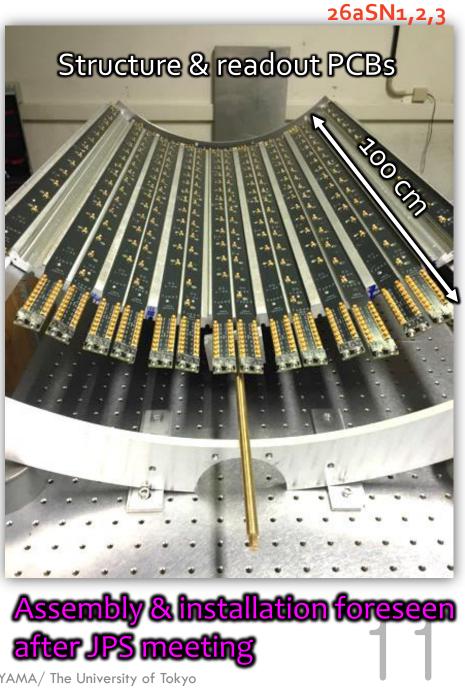
2015/Sep/25 @ JPS 2015 Autumn

26aSN1,2,3 **Pixelated Timing Counter**

- **30-ps resolution counter system** with segmented scint. counters
- Engineering run with half of downstream (128) counters
 - ~140 counters have been constructed
 - **\Box** Single counter resolution $\sigma \sim 75$ ps ~10 ps worse than expected due to lower PDE of mass-produced SiPMs (AdvanSiD)
 - \Rightarrow 15% worse overall resolution: 28 \rightarrow 32 ps
 - Scintillator production failure (Saint-Gobain) Good production eff. ~35% . Reproduction ongoing
 - Mechanical & installation system ready
- Test calibration system
 - Installation starts at mid-Oct.

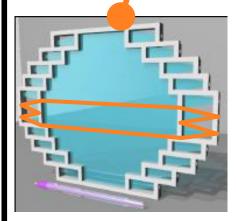
Upstream

Downstream


(256)

2015/Sep/25 @ JPS 2015 Autumn

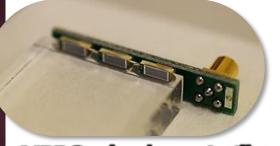
28aSG7,8 New BG Tagging Detector (RDC)


Downstream

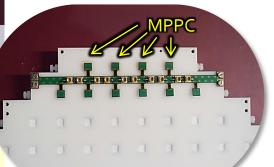
Plastic scintillator

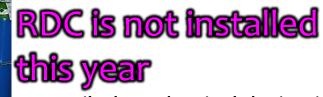
250 µm

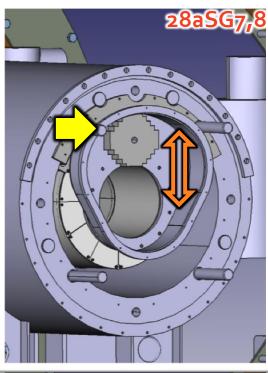
- **Optional detector, new for MEG II**
 - To actively tag BG from $\mu \rightarrow e \nu \bar{\nu} \gamma$
- Test Upstream detector's impact on beam in this year's run
 - for the final decision.
 - Prototyping.
- Downstream detector was approved by the collaboration, giving 16% higher sensitivity
 - Construction underway (in this y

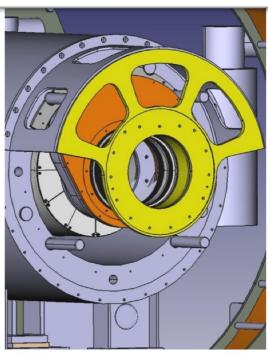


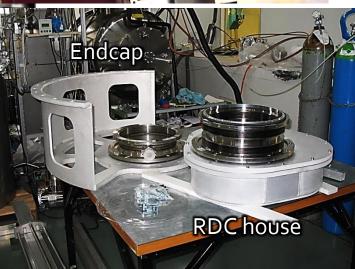
Scintillating fiber


Upstream

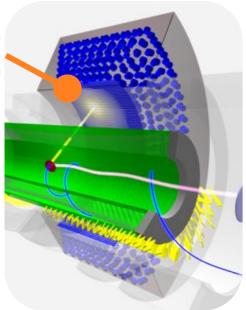

2x2x2 cm³ LYSO crystals


MPPCs glued on scintillator




MPPCs are not glued but pressed onto LYSO with grease

 Detailed mechanical design is not yet fixed (moving system, cabling, etc.)



27aSN8,9,10

2015/Sep/25 @ JPS 2015 Autumn

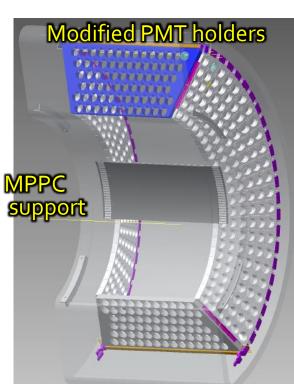
<u>LXe γ-ray Detector</u>

- **Replace inner-face PMTs with MPPCs**
 - must be sensitive to LXe scint. light (175 nm)
- This year, concentrate on the construction (no engineering run), till April 2016.

Mass test in room temp.

are measured at once.

~40 MPPCs (~160 chips)

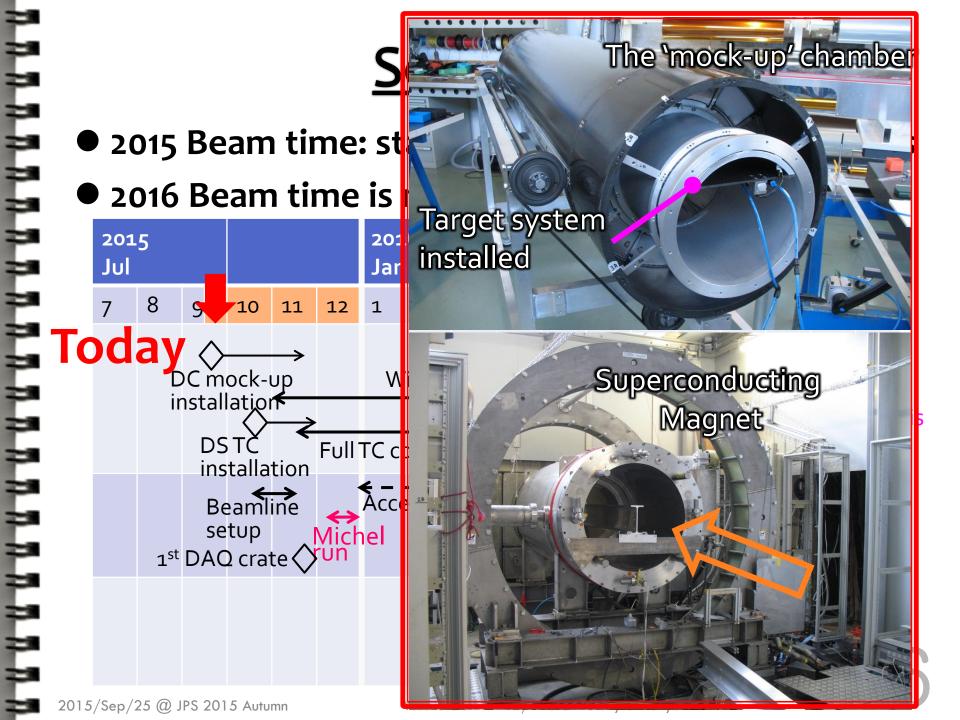

- Final MPPCs are being delivered and tested.
 - 3370 (out of 4200) were delivered, and 2450 were tested.
 - ~2 months delay in delivery (Hamamatsu Photonics)

VUV MPPC (S10943-4186(X)) (12×12 mm²)

relays to change the readout chips

27aSN8,9,10

- Detailed measurement and mechanical test of cryostat done.
- Modification of PMT holders is finalized, construction to be started soon.



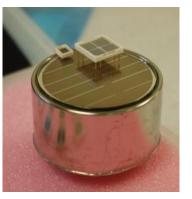
 Detector assembly starts in Nov. and will be completed by Apr. 2016

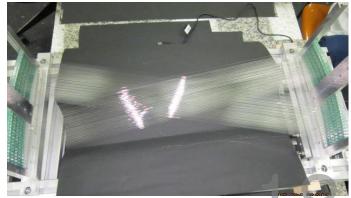
✓ ~half year delay

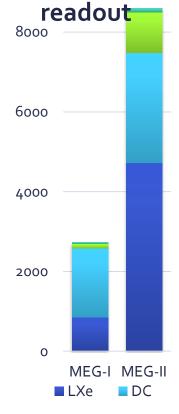
- Installation & commissioning in spring-summer.
 - \checkmark Liquefaction, operation & signal test

Conclusion

• A very important step for MEG II realization


 All the detectors are now under construction ✓ With facing and solving many technical 	тс	26aSN01
		26aSNo2
		26aSNo3
problems ✓ ~ half year delay		27aSNo8
 We will carry out a 'pre'-engineering run this autumn-winter (as scheduled) ✓ Test mechanical integrity ✓ Carry out Michel run with a Timing Counter 	LXe	27aSN09
		27aSN10
	RDC	28aSG07
		28aSGo8


• Toward starting data-taking in 2016


Detector technologies

- Large-area VUV sensitive SiPM
 for the world's largest LXe detector. (wavelength 175 nm)
- 30 ps precision time measurement
 - with fast plastic scinti. & SiPMs
- Low mass long stereo-wire drift chamber
 - 0.0017 X_o for a particle
- Compact, dense DAQ system
 - To deal with increased channels
 - Waveform digitizer & first trigger step in a same board

Prototypes

of

10000

Electronics, DAQ

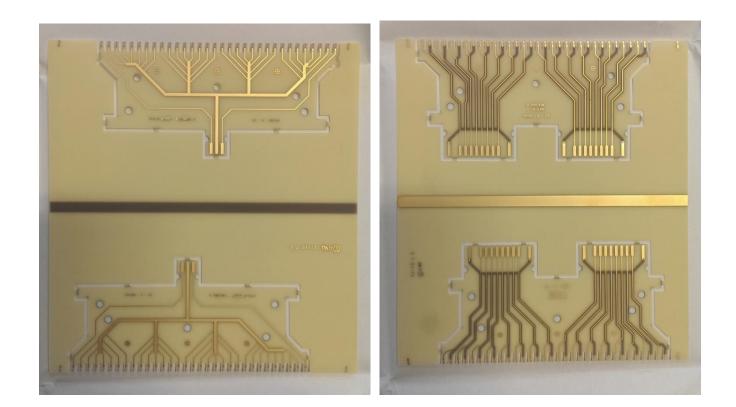
- Innovative solution for Trigger & DAQ
 - Waveform digitizer, frontend circuit, HV supply, 1st level trigger on a board

Prototype board under test

 Frontend circuit was tested with detector signal

First full crate (256 ch) available by Oct. this year

- tested in the pre-engineering run
- Mass production will be started after the test


• Complete system ready by spring 2016

• Final design fixed (4th version)

1st ver. in Feb 4th ver. in Sep

20