Development of Upstream MEG II Radiative Decay Counter

MEG II 輻射崩壊同定用カウンター上流側検出器の プロトタイプビーム試験と設計最適化

Ryoto Iwai (東大理) on behalf of MEG II collaboration

Contents

- 1. Introduction
- **2.** Impact on μ beam
- 3. Detection Inefficiency due to µ pile-up
- 4. Summary & Prospect

1. Introduction

Radiative Decay Counter (RDC)

• Accidental BG is the dominant BG in $\mu^+ \rightarrow e^+\gamma$ search

 RDC measures time coincidence of low momentum e⁺ and BG γ on μ beam axis by fast timing counters based on plastic scintillators

Upstream detector

- The detector is designed to minimize the influence on µ beam
- Upstream detector measures only timing of e⁺ with scintillation fiber

Scintillation fiber ~20cm length 250 × 250µm² square shape Photosensors Hamamatsu, MPPC

readout at both ends

	MEG II
	sensitivity
w/o RDC	5.0×10 ⁻¹⁴
w/ downstream	4.3×10 ⁻¹⁴
w/ downstream + upstream*	3.9×10 ⁻¹⁴
*accuming datactic	n officianay 00

*assuming detection efficiency ~90%
 *inefficiency due to µ pile-up is NOT
 considered

- Following studies are needed
 - 1. Influence on the µ beam properties
 - 2. <u>Detection inefficiency due to µ pile-up</u>
 - 3. Radiation damage of scintillation fiber & MPPC

Upstream detector

- The detector is designed to minimize the influence on µ beam
- Upstream detector measures only timing of e⁺ with scintillation fiber

<u>Scintillation fiber</u> ~20cm length 250 × 250µm² square shape

Photosensors

Hamamatsu, MPPC readout at both ends

	MEG II sensitivity
w/o RDC	5.0×10 ⁻¹⁴
w/ downstream	4.3×10 ⁻¹⁴
w/ downstream + upstream*	3.9×10 ⁻¹⁴

*assuming detection efficiency ~90%
 *inefficiency due to µ pile-up is NOT considered

- Following studies are needed
 - 1. Influence on the µ beam properties
 - 2. Detection inefficiency due to µ pile-up
 - 3. Radiation damage of scintillation fiber & MPPC

2. Impact on µ beam

Study on beam spot

- 28MeV/c µ beam is slowed-down by degrader
- RDC will be installed with equalizing amount of material

- µ beam might be affected by putting material in different position
- Studied influence with "dummy" RDC

Influence with bigger beam spot

e⁺ trajectory bend by COBRA magnet

- Performance of e⁺ tracking might be affected
 - Long good track in the Drift Chamber might decrease (more e⁺ cross outer frame at the 1st turn)
 - **②** Number of hitting Timing Counters might decrease
 - ③ Hit rate might increase in the inner part of the Drift Chamber

Simulation study(Geant4 based)

• Studied efficiency loss with signal event (event cut with LXe acceptance)

② N_{event} which crosses at least 1 Timing Counter tiles

efficiency of long tracking e⁺

	①Drift Chamber	2 Timing Counter	(1)×2)	
normal	98.25 ± 0.05%	95.33 ± 0.08%	93.73 ± 0.09%	efficiency decreased by
bigger beam spot	97.65 ± 0.06%	95.11 ± 0.08%	92.99 ± 0.09%	~0.0 /0

10

Studied hit rate with Michel event (4π angle range, 7×10⁷µ/s)
 ③ Drift Chamber hit rate at the innermost layer

• Event loss on the target was also studied

acceptance decreased by ~0.1%

• The influence on beam seems small

3. Detection inefficiency due to µ pile-up

Detection Inefficiency due to µ pile-up

• Large μ hit rate at the central fiber (~500kHz with 10⁸ μ /s intensity)

µ hit rate in each fibers

• Fibers are bundled and readout with single MPPC

larger bundles to minimize the number of channels

smaller bundle to minimize pile-up

Detection Inefficiency due to µ pile-up

• Large μ hit rate at the central fiber (~500kHz with 10⁸ μ /s intensity)

µ hit rate in each fibers

• Fibers are bundled and readout with single MPPC

• Minimum timing difference(ΔT) to distinguish 2 waveforms

• µ waveforms have large width & after pulse

µ waveform

Actual ΔT needs be studied by acquiring real waveforms

- We used 28MeV/c μ & e⁺ beam (at PiE5)
- Prototype detector (developed for RDC & 2D beam monitoring device)

Multi-clad scintillation fibre

2 layers (21 fibers each)

Saint Gobain (BCF12)

length ~20cm

 $250\mu m \times 250\mu m$ square shape

Photosensors

•

Hamamatsu (MPPC, S13360-1350CS)

DAQ machine (WaveDREAM)

amplifier (gain 100) waveform shaper waveform digitizer

Waveform Analysis

Step 1: µ & e⁺ waveform selection

 coincidence at the both fiber ends &&
 single pulse cluster in each event

• Step 2 : Mix 2 waveforms

time difference of 2 waveforms (before mixing)

Step 3 : Reanalyze and search e⁺ pulse in mixed waveforms

• Probability of pile-up was calculated for each bundle size ($\Delta T = 120$ ns)

Inefficiency & Sensitivity

• In provisional design, *N*_{bundle} = 18

minimum Ineff. ($\Delta T = 120$ ns) = 50.4 ± 0.1%

BG reduction capability -> ~ -28%

estimated sensitivity -> BR($\mu \rightarrow e\gamma$) ~4.11×10⁻¹⁴

• N_{bundle} vs Ineff. ($\Delta T = 120$ ns)

• ΔT vs Ineff. ($N_{\text{bundle}} = 18$)

Δ <i>Τ</i> (ns)	Ineff.	sensitivity(×10 ⁻¹⁴)
0	0.0%	3.90
30	16.6%	3.97
60	30.1%	4.03
100	44.5%	4.09
120	50.4%	4.11

Prospect to make Ineff. smaller

- <u>1. Increase N_{bundle} (currently limited by available space for readout)</u>
- <u>2. Staggered reading out method</u>

*e+ can be detected in one side with pile-up
*Ineff. can be reduced by ~1/2
*possibility of this design is under discussion

- <u>3. Make PDF of the after pulse and use it in likelihood analysis</u> (characterization of the after pulse should be studied)
- 4. Optimize MPPC (50µm pixel pitch was used in this test)

Summary

- R&D of the upstream RDC is ongoing
- The impact on µ beam was studied
- The influence with the bigger beam spot is small

relative changes with the upstream RDC

beam spot($\sigma_x \times \sigma_y$)	acceptance	e+ long tracking efficiency	Drift Chamber hit rate
+16%	-0.1%	-0.7%	+0.7%

- However, the detection inefficiency due to µ pile-up is large(~50%)
- The way to minimize it is under investigation

Back up

Distribution of $T_e^+ - T_\mu(s)$

e⁺ true +/- 10ns(time), +/- 10mV(height)

e⁺ true +/- 20ns(time), +/- 20mV(height)

e⁺ time

23

Noise RMS

Mixed waveforms

700 h 600 16744 Entries Mean 0.005263 0.001774 500 RMS χ^2 / ndf 52/9 Constant 655.3 ± 11.3 400 0.004684 ± 0.000012 Mean Sigma 0.0005169 ± 0.0000172 300 200 100 0 0.002 0.006 0.008 0.012 0.014 0.016 0.018 0.02 0.004 0.01 0 noiseRMS(V)

Before mixing

After pulse time

Time difference from main pulse (largest pulse height)

Probability of pile-up 2

 $P2 = N_{pile-up}/N_{RMD2}$

 $N_{\text{pile-up}}$: number of pile-ups with μ in a bundle N_{RMD2} : number of detected RMD e⁺ in a whole detector

Beam & Target parameters

• Beam parameters (from result of dummy test)

	σ _x (mm)	σ _y (mm)
normal	10.7 ± 0.2	10.4 ± 0.2
w/ dummy	11.5 ± 0.2	11.2 ± 0.2

- Target angle : $\theta = 15^{\circ}$
- 2 target shape
 - \rightarrow standard : same size as the beam test
 - → bigger : able to cover both $6\sigma_x$ and $6\sigma_y$ with dummy

	major axis(mm)	minor axis(mm)	thickness (μ m)
standard	260	70	120
bigger	267	70	120
			*fiducial size

Target has a 10mm frame

Beam & Target parameters

 If we use standard target (solid line) with dummy instead of bigger target (red dash line), event loss will be 0.13 ± 0.01%

①. Efficiency loss by hitting the outer shell of CDCH in the 1st turn

- 100k signal events with extended angle range ($|\cos\theta| < 0.45$, $|\phi| < 7\pi/18$) were generated on the target
- The percentage of N_{event} which will cross outer frame since 2nd turn was calculated
 - → Event selection with LXe acceptance (r=64.97, |z|<23.9, |v|<67.9)

• Efficiency for long track changed by - $0.74 \pm 0.08\%$ with dummy and bigger target

2. TC hitting efficiency

- 100k signal events with extended angle range ($|\cos\theta| < 0.45$, $|\phi| < 7\pi/18$) were generated on the target
- The percentage of selected N_{event} which will cross at least 1 counter was calculated
 - → Event selection with LXe acceptance (r=64.97, |z|<23.9, |v|<67.9)

Beam parameters	Target	Result
normal	standard	95.33 ± 0.08%
w/ dummy	standard	95.11 ± 0.08%
w/ dummy	bigger	95.09 ± 0.08%

• Efficiency changed by - $0.25 \pm 0.12\%$ with dummy and bigger target

Efficiency of 1 AND 2

 From selected events with LXe acceptance, we estimated how much the efficiency of ① AND ② will be decreased

Beam parameters	Target	Result
normal	standard	93.73 ± 0.09%
w/ dummy	standard	92.99 ± 0.09%
w/ dummy	bigger	92.95 ± 0.09%

• Efficiency changed by $-0.83 \pm 0.16\%$ with dummy and bigger target

③. Hit rate of single cell in the 1st layer of CDCH

- 100k Michel events with 4π angle range
- CDCH has large number of hits in the innermost layer₃₀₀₀₀
- 50000 40000 رىرىمى ا سى htemp **Entries 3698905** Mean 1085 RMS 533.1 20000 10000 500 1000 1500 2000 hit wire id 1 st laver
- Hit rate of single cell in the 1st layer with 7×10^7 intensity

Beam parameters	Target	Result
normal	standard	1.765 ± 0.003MHz
w/ dummy	standard	1.779 ± 0.003MHz
w/ dummy	bigger	1.779 ± 0.003MHz

• Hit rate changed by $+ 0.79 \pm 0.24\%$ with dummy and bigger target

Reconstructed energy resolution

- 100k signal events with extended angle range ($|\cos\theta| < 0.45$, $|\phi| < 7\pi/18$) were reconstructed with gem4_fit_genfit.xml
- Tracking selection with LXe acceptance (r=64.97, |z|<23.9, |v|<67.9)
- True hit was used and smeared with resolution

Summary

 \cdot The influence of bigger beam spot on the efficiency was studied with MC

Efficiency changes with bigger beam spot compared to normal beam size

target size	µ stopping efficiency	long track efficiency	TC hitting efficiency	total efficiency
standard	-3.13%	-0.61%	-0.21%	-3.90%
bigger	-3.00%	-0.74%	-0.25%	-3.81%

- The influence on hit rate of single cell in the 1st layer of CDCH was studied
- The influence on the reconstructed energy resolution was studied
- <u>These influence seems small</u>

Concerning the detector size

- Simulation results with gem4 from RDC report 2014
- Acceptance of RMD e⁺ with $E_{\gamma} > 48 \text{MeV} \& \mu$ stopping efficiency with several detector size (width or diameter)

<u>US RDC should not reduce µ stopping efficiency</u> (the size should be 14cm~)

N_{bundle} in provisional mechanical design

 N_{bundle} will be limited by available space around the detector

Provisional mechanical design by Florian

- N_{bundle} : 18
- The smallest bundle is
 16 fiber bundle