MEG II実験における 陽電子時間再構成法の研究

Study of Positron Timing Reconstruction in MEG II Experiment

西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2016年秋季大会 宮崎大学(木花キャンパス)

Content

- MEG II Requirement
- Positron Spectrometer
- Positron Timing Counter
- Clustering of Positron Timing Counter Hits
 - Performance estimation with MC
 - Analysis with data
- Prospects
- Summary

MEG II Requirement

In MEG II experiment we aim to search for charged lepton flavor violation, $\mu^+ \rightarrow e^+\gamma$ decay.

Precise measurement of emission angle, energy, and timing of both positron and γ is essential.

⇒ Today's topic is time measurement of positrons.

Timing Counter

Clustering

- The TC is pixelated by 512 scintillator counters.
- Positron comes to the TC in high rate. (a few MHz in the TC region.)
- \rightarrow Clustering of TC hits is necessary.

All hits from the same track and the same turn should be included in a cluster. Following parameters should be checked.

- Cluster reconstruction efficiency
- Miss hit in a cluster
- Contamination hit of a cluster

Clustering Methods

- Local Geometrical Clustering
 - Make chain with geometrical order of positron hit one by one.

Good: Don't need any calibration among the counters.

Bad: The effect of contamination hit is large. Geometrically far hits are separated into the different clusters.

Global Clustering (NEW)

• Use relationship b/w hit time and counter position information.

Good: less affected by contamination hits. Combine geometrically far hits. **Bad:** Need good time calibration among the counters.

Global Clustering

Algorithm

① Make projection for every hit time with geometrical order dependence.

2 Peak Search

③ Make clusters in certain region (1 ns) from each peak.

Study of clustering performance with MC¹⁰

Estimate the clustering performance with MC. Performance is estimated for "target cluster"

- Cluster of 1st turn in TC
- Incident Momentum > 35 MeV
- Vertex of muon decay is on target
 - The positrons from muon decay out of target are identified by DCH.
- # of hit > 3

MC Set Up

- Geant4
- Generate muons, which are stopped on a target.
- Positron from normal muon decay hits the TC.
- Muon mixing rate is $7 \times 10^7 \,\mu/s$ (same as pilot run)
- Detector implementation follows a pilot run conducted on June to compare to data.
 - ¼ TC, No DCH

6

8

10

12

14

16

Number of hit pixels

18

20

Signal positron

0.02

0

Cluster Quality

Clusters which have miss hit are not so many. (~ 1%)

However some clusters (~15 %) have contamination hit.

 \rightarrow Cut with the fit result or reconstructed position will be studied.

Efficiency vs Incident Momentum

Cluster reconstruction efficiency :

(reconstructed cluster) (# of true cluster of 1st turn)

Matching b/w reconstructed cluster and true cluster is done with first hit in reconstructed cluster.

Around the signal region 99.3 % efficiency is achieved.

Efficiency vs Incident Momentum

At larger # of hits, efficiency is better.

Performance of Time Reconstruction¹⁴

Check the performance of time reconstruction with difference b/w reconstructed first hit time and true time of it.

 \Rightarrow Limit of the linear fit for hits.

Comparison with Data

- Apply this clustering algorithm to data in pilot run.
 - ¼ TC in the MEG II site.
 - Muon beam (MEG II nominal rate. $^{7}x10^{7} \mu$ /s on target)
 - Trigger: > 1 hit in TC
- To check consistency
 - Standard deviation of projected times of clustered hits.
 - (RMS of projected time)/ $\sqrt{N-1} \rightarrow$ resolution @ large # of hits
- Comparison with the resolutions with the different analysis
 - Check the resolutions with certain counter combinations.

Standard deviation of projected times

16

Resolutions of 28.5 ps (MC), 31.1 ps (Data) at *n hits* = 8.

The distributions are consistent with MC, especially at smaller # of hits. At larger # of hits, the accuracy of the timing calibration affects them.

Resolution Estimation for Data

Even-Odd analysis

- To be estimate the TC multi-hits resolutions.
- Choose combination of the counters to be analyzed.

•
$$(\sum_{i}^{N/2} T_{2 \times i})/N - (\sum_{i}^{N/2} T_{2 \times i+1})/N$$

N: number of hits

• Its resolution should be the same as $(\sum_{i}^{N} T_{i})/N$ if each time measurement does not have any correlation with each other.

For example at N=6: $((T_1+T_3+T_5)/3 - (T_2+T_4+T_6)/3)/2$

Even-Odd analysis w/ and w/o clustering¹⁸

- Since the tail event are reduced due to the new clustering algorithm, the resolutions become better.
- Resolutions of 33.7 ps w/ clustering, 35.1 ps w/o clustering at N = 8 (31.1 ps (Data) at n hits = 8 from standard deviation.)

Prospects

- Use reconstructed position of TC instead of geometry order
- Iteration
 - Cut contamination hits
 - Combine miss hits
- Combine with DCH reconstruction and the additional iteration.

Summary

- $\mu^+ \rightarrow e^+ \gamma$ search requires precise timing measurement of positron.
- New clustering algorithm for TC is developed.
- Its performance is checked.
 - Miss hit and contamination are checked. It have room for improvement with detailed cut.
 - Efficiency around signal region is 99.3 %.
- Clustering is applied to data.
 - The distribution of the RMS/ $\sqrt{N-1}$ is checked as estimator for the analysis and ~30 ps resolution is obtained.
 - The new clustering analysis improves the resolution with even-odd analysis.

Back Up

Tail events

- Tail in "clean" events come from hits from different turns of the same positron.
 - They affect final time measurement.
- These kind of hits should be separated by
 - Tracking
 - More precise timing cut in clustering

 $((T_1+T_3)/2 - (T_2+T_4)/2)/2$ \Rightarrow make positive tail.

Cluster quality (n = 10)

Cluster quality (n = 5)

The cut for the clustering

