

Search for the Lepton Flavor Violating Muon Decay $\mu^+ \rightarrow e^+ \gamma$ with a Sensitivity below 10⁻¹² in the MEG Experiment

Yuki Fujii IHEP → KEK 21st March 2016 @ 71st JPS annual meeting Izumi Campus, Tohoku Gakuin Univ.

Abstract

- Analysis on the data taken by MEG during 2009-2011 to search for $\mu^+ \rightarrow e^+ \gamma$
 - Statistics are double by the previous results using 2009-2010 data
- Further improvements for the reconstruction and analysis methods
 - Pileup removal for gamma rays
 - Offline noise reduction for drift chamber waveforms
 - Revise the track fitting for positrons
 - Newly developed "Per-event" PDF
- The first search for the $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity below 10⁻¹² order of magnitude
- The most stringent upper limit on search for $\mu^+ \rightarrow e^+\gamma$: **B**<**5.7**×**10**⁻¹³ @ 90% C.L.

Abstract

- Analysis on the data taken by MEG during 2009-2011 to search for $\mu^+ \rightarrow e^+ \gamma$
 - Statistics are double by the previous results using 2009-2010 data
- Further improvements for the reconstruction and analysis methods
 - Pileup removal for gamma rays
 - Offline noise reduction for drift chamber waveforms
 - Revise the track fitting for positrons
 - Newly developed "Per-event" PDF
- The first search for the $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity below 10⁻¹² order of magnitude
- The most stringent upper limit on search for $\mu^+ \rightarrow e^+\gamma$: **B**<5.7×10⁻¹³ @ 90% C.L.

Final results is published in this month New upper limit: 4.2×10⁻¹³ 1st report @ La Thuile, 2nd one is in this meeting! No positive signal found

....

COMETの話を入れる ように!

Lepton Flavor Violation

Quarks

Flavors are mixed through CKM matrix in the Standard Model, Already confirmed

Leptons

Flavors are mixed through PMNS matrix, Already confirmed (not included in SM)

Charged Lepton Flavor Violation (CLFV) Forbidden in the Standard Model, $B(\mu \rightarrow e\gamma) \sim O(10^{-50})$ for SM+ ν oscillation, Not observed yet

Lepton Flavor Violation

Quarks

Flavors are mixed through CKM matrix in the Standard Model, Already confirmed

Leptons

Flavors are mixed through PMNS matrix, Already confirmed (not included in SM)

Charged Lepton Flavor Violation (CLFV) Forbidden in the Standard Model, $B(\mu \rightarrow e\gamma) \sim O(10^{-50})$ for SM+ ν oscillation, Not observed yet

e

 $\widetilde{e}_{\mathrm{R}}$

 $\tilde{\mu}_{\mathrm{R}}$

 μ

 $\tilde{\chi}^0$

Example diagram of the $\mu \rightarrow e\gamma$ decay in SUSY

- Many BSMs predict the detectable $B(\mu{\rightarrow}e\gamma)$ in between $10^{\text{-}11}$ and $10^{\text{-}15}$
 - SUSY-GUT, SUSY-Seesaw, Extra dimension, etc.
- *Previous MEG results: ****2.4×10**⁻¹² @ 90% C.L.
 - Already in the "BSM region"!
- Discovery of the $\mu \rightarrow e\gamma$ decay should be the clear evidence of BSM
- Existence of the g-2 deviation, proton radius puzzle

• Something new in the muon sector??

• CLFV searches can indirectly access the <u>higher mass scale</u> <u>than that of LHC</u>

 $\mu \rightarrow e\gamma$ in BSM

Signal / Background

Signal / Background

NEG Experiment

MEG Apparatus

Beam & Target

Muon beam transport solenoid (BTS)

- Select the surface (~30MeV/c) muon with a high purity

- Up to 8×10^8 muons can be transported at the detector region

The world most powerful proton ring cyclotron @ PSI - 1.3 MW (2.2 mA) with a 590 MeV energy - 50.6 MHz frequency

205 μ m plastic target to stop muons with a 20° of slant angle

Muon stopping target mounted inside the COBRA magnet

COBRA Magnet

- Specially graded B field
 - Low momentum positrons are quickly swept out
 - → Low hit rate in the drift chambers
 - The curvature of signal positrons is almost independent on their emission angles

Liquid Xenon Detector

Lateral (Downstream) face

- Determine the timing/energy/ position of γ rays
- Non-segmented calorimeter with 900 ℓ of liquid xenon
 - Good stopping power
 - High detection efficiency
 - Fast scintillation timing
 - Good at pileup separation
 - VUV-sensitive PMTs

	LXe	LAr	NaI(Tl)	CsI(Tl)	BGO
Density (g/cm^3)	2.98	1.40	3.67	4.51	7.40
Radiation length (cm)	2.77	14	2.59	1.86	1.12
Moliere radius (cm)	4.2	7.2	4.13	3.57	2.23
Decay time (ns)	45	1620	230	1300	300
Wavelength (nm)	178	127	410	560	480
Relative light yield	75	90	100	165	21

=

Drift Chamber

Schematics of the drift chamber module

- Measure the momentum and vertex of positrons
- Made of ultra low mass materials
 - Minimize the multiple scattering
 - Suppress γ ray BG production
- 16 modules consist of two staggered layers
 - Reduce the L-R ambiguity
- Vernier method
 - Zig-zag pattern enables the precision measurement along z-axis less than 1mm
- He:C₂H₄=50:50 gas mixture
 - Short radiation length ~2×10⁻³X₀ for signal positrons

Drift chambers installed inside the COBRA magnet

Timing Counter

- Reconstruct the impact time of positrons
 - 15 of scintillator bars for both upstream and downstream
 - $\bullet\,$ Timing and φ position measurement
 - Scintillation light are detected by using fine-mesh PMTs at both ends
 - Scintillating fibers are placed on the scintillator bars to measure the position along z-axis
 - Not used in the reconstruction/analysis because of unstable operation

Trigger & DAQ

- Kind of switched capacitor array specially developed in PSI
- Enables to take the data from all detectors as waveforms
- Adjustable sampling speed up to 5GHz, 1.6GHz for LXe, TC and 0.8GHz for DCH
- Trigger
 - Latency should be less than 700ns to trigger the data before DRS4 buffer becomes full
 - Need to suppress the DAQ rate less than 10Hz to read out the enough channels as waveforms
 - FPGA based trigger system is adopted

• DAQ

• Based on the "MIDAS" developed in PSI and TRIUMF

Run Status

• Statistics are almost doubled

- Improve the DAQ live time by introducing double-buffering method
- Replace NaI to BGO crystals for CEX calibration
- etc..
- 2011 data taking: The longest and the most stable run period so far

Reconstruction & Calibrations

Gamma Reconstruction

- E_{γ} , T_{γ} , γ position are reconstructed from all waveforms from LXe
 - Gain, Non-uniformity etc. are corrected
- Cosmic-rays are rejected topologically
- Pileup events are identified/rejected by searching the multi-peaks on the light yield distribution
- New waveform removal algorithm is implemented as well
 - Details will be described later

Positron Reconstruction

Y. Fujii 2016/3/21

71st JPS annual meeting

Y. Fujii 2016/3/21

Reconstruction Updates

• Gamma pileup removal using waveforms

- 7% improvement in efficiency
- Drift chamber offline noise reduction
 - 6% efficiency recovery, resolutions improved as well

Revisited the track fitting method

- 6% efficiency improvement, reduce the momentum tail
- Enable to use the event-by-event uncertainties for physics analysis

Y. Fujii 2016/3/21

71st JPS annual meeting

24

Observables in Physics Analysis

Table 5.7: Performance summary.

Variable	2009	2010	2011
Gamma Resolutions			
E_{γ} (%)	$1.9 \ (w > 2 \ cm),$	1.9 ($w > 2$ cm),	1.7 (w > 2 cm),
	$2.4 \ (w < 2 \ {\rm cm})$	$2.4 \ (w < 2 \ {\rm cm})$	$2.4 \ (w < 2 \ {\rm cm})$
$u_{\gamma}, v_{\gamma} ({ m mm})$	5	5	5
$w_{\gamma} ({ m mm})$	6	6	6
$t_{\gamma} ~(\mathrm{ps})$	96	67	67
Positron Resolutions			
$E_{\rm e}~({\rm MeV})$	0.31	0.32	0.31
$\phi_{ m e} \ ({ m mrad})$	6.6	7.2	7.5
$\theta_{\rm e}~({\rm mrad})$	9.4	11.0	10.6
$y_{ m e}~({ m mm})$	1.1 (core)	1.1 (core)	1.2 (core)
$z_{\rm e} \ ({ m mm})$	1.1	1.7	1.9
$t_{\rm e}~({\rm ps})$	107	107	107
Combined Resolutions			
$\phi_{\mathrm{e}\gamma} \ \mathrm{(mrad)}$	8.9	9.0	8.9
$\theta_{\rm e\gamma} \ ({\rm mrad})$	15.0	16.1	16.2
$t_{ m e\gamma}~(m ps)$	156	123	127
Efficiency			
ϵ_{γ} (%)	63	63	63
$\epsilon_{ m e}~(\%)$	28	35	31
$\epsilon_{ m trg}$ (%)	91	92	97

71st JPS annual meeting

*All resolutions are defined as $\boldsymbol{\sigma}$

- $\bullet\,$ Maximum Likelihood Fitting is used to determine the values of N_{sig}, N_{RMD} and N_{BG}
- Parameters of PDFs are mostly determined by looking the data in sidebands
- Full frequentist approach to calculate the upper limit

Per-Event PDF (1/2)

Resolutions :

Event-by-event PDFs of typical 2 events in $t_{e\gamma}$ sideband

 \rightarrow Per-event PDF gives ~10% better sensitivity by taking into account the event-by-event difference of uncertainties in the likelihood fitting

Green: Signal PDF Magenta: BG PDF Red: RMD PDF Blue: Total ★: Data

Average PDF in 2009-2011 dataset

Low quality track

55549-625

- Normalization factor is defined as: $\mathbf{k} = 1/(S.E.S.) \rightarrow B(\mu \rightarrow e\gamma) = N_{sig}/k$
- The value is calculated by independent two methods
 - #of Michel positron using "Michel trigger" data taken w/o requiring γ -rays in LXe
 - # of RMD using MEG trigger
- Results of above 2 methods are combined to reduce the uncertainties

Sensitivity

- Sensitivity = Median of the 90% C.L. upper limits determined by generating the sizable toy-MC experiments with a NULL signal hypothesis
- Statistics, several reconstruction and analysis improvements give twice better sensitivity than before
 - The first search of $\mu \rightarrow e\gamma$ down to 10⁻¹³ order of magnitude
- All sidebands show the consistent results

Likelihood Fit

• No signal excess is found

Upper Limit

Consistency Checks

- Several consistency checks are done
 - For 2011 data, relatively large 'negative' fluctuation is observed
 - It can happen in 24% of probability
 - High signal-like events in the new/previous analysis are checked
 - All differences for high ranked events are within expectation
 - We also performed the physics analysis using the old PDF
 - The difference between old/new is not large

- The $\mu^+ {\rightarrow} e^+ \gamma$ decay search using 2009-2011 data performed
 - First $\mu^+ \rightarrow e^+ \gamma$ search with a sensitivity below 10⁻¹²
- No signal excess is observed
 - $B(\mu^+ \rightarrow e^+ \gamma) < 5.7 \times 10^{-13}$ (90% C.L.), with a sensitivity of 7.7×10⁻¹³
 - Start exploring "**new physics region**" deeply
- New results presented in this month using "FULL" data taken by MEG
 - Final upper limit: 4.2×10^{-13} with a Sensitivity of 5.3×10^{-13} , no signal excess observed
 - Details are presented by D. Kaneko (19aAH-3), will be published on arXiv soon

Don't worry, it's not the end!

MEG New Era of CLFV Searches

Master Thesis

$\mu \rightarrow eee Search$

- Study the feasibility to search for $\mu \rightarrow eee$ using the COBRA spectrometer
 - Confirmed that it is almost impossible to exceed the current upper limit
- In MEG II, I think it's possible at least to reach the current upper limit $\sim 10^{-12}$

NEC II Experiment

MEG II

MEG II Goal sensitivity ~5x10⁻¹⁴

19aAH-4,10,11 19pCA-1,2,3 22pAN-3,4 LXe detector Upgrade Inner face PMT → UV-sensitive SiPM Better energy & position resolutions ~7×10⁷ µ/s stopped on target already available @ PSI

Radiative Decay Counter (RDC) Tagging gamma BG from RMD → Active BG suppression

MEG

- Finished data taking in August 2013

Pixelated Timing Counter Better Timing Resolution Less pileup Flexible design

Stereo Wire Drift Chamber Higher efficiency Less MS, BG γ generation High granularity

Upgrade proposal was already approved by Paul Scherrer Institut (arXiv:1301.7225)

Y. Fujii 2016/3/21

Simulation study

Geant4 simulation of signal e+ w/ TPC

- * There are 2 main simulation part
 - Event generation, Detector simulation and physics processes
 - Done by Geant4
 - Gas simulation
 - * Drift part of ionized electron
 - * E field is calculated by ANSYS (FEA)
 - Drift line of ionized electron is bent by magnetic field
 - * 3D TXY table can be generated w/ Garfield+
 +
 - Gas amplification
 - To be calculated w/ Garfield++

Performance evaluation

* Momentum & Angular resolutions (e.g. $\sigma_{int} = 250 \mu m$, target thickness = 140 μm)

* Very good resolutions !

RTPC Prototype

• Now this prototype is waiting for being tested @KEK...

Y.Fujii 2016/3/21

RDC Development

- **RDC** is an additional detector for MEG II to further suppress the gamma BG from radiative muon decay
 - The development just started from the coffer break conversation with Sawada-san...
 - Then the small prototype was produced and beam test was performed in 2013

RDC Development

New Field Measurement Machine

Magnetic field measurement

- 2006 magnetic field was measured with 0.2% precision (sensor position calibration ~800µm) ~ 150keV momentum resolution
- Momentum resolution in MEG II ~ 130keV, need to reduce the uncertainty of the magnetic field
- In July and August 2014, magnetic field measurements were performed with a new measurement machine which sensor position is more precisely calibrated (<300µm). If this new field map improves the momentum resolution of the current MEG data, this will be applied to them, too.

岩本敏幸氏 2014年秋季大会スライドより

R: 20 mm step φ: 30 deg step

COMET Experiment

- Current upper limit: 7×10⁻¹³ @90% C.L. set by SINDRUM II
- COMET aiming goal: 10,000 times higher sensitivity, O(10⁻¹⁷)
 - Bunched slow extraction+delayed timing method highly suppress the prompt beam BG
 - SINDRUM II \rightarrow continuous beam, suffered from the beam origin BG...
 - C-shaped muon transport solenoid further reduce beam origin BG
 - Another C-shaped electron transport solenoid enables the low occupancy @ detector region

COMET Experiment

• World Wide Collaboration

• ~150 people, 40 institutes in 15 countries

COMET Phase-I

- COMET will start Phase-I experiment from 2018/2019:
 - Construct the 1st 90° of the muon transport solenoid
 - CyDet: Physics measurement aiming to search for μ-e conv. w/ a sensitivity of 10⁻¹⁵, Cylindrical Drift Chamber+Cherenkov Trigger Hodoscope
 - **StrawECAL**: Measure the beam particles and their timing precisely, alternatively search for μ -e conv. use Straw Tube Tracker+ECAL as Phase-II prototype detectors

CyDet 22aCA-8,9 Yamane, Y. Nakazawa 22pAH-4,5 H. Yoshida, T.S. Wong StrawECAL 20pAM-4 H.Yamaguchi 22pAH-3 S.Tanaka

Main Tasks in COMET

Software

Gamma Collaboration

- Development for the offline software "ICEDUST"
 - Simulation: Almost implemented
 - Reconstruction: Basic part established
- Trigger
 - Start the COTTRI (COmeT TRIgger) project as for the front-end trigger system
 - Design: 1st prototype was produced
 - Firmware Development: Ongoing

COTTRI Prototype in Lab

Beam Test @ELPH

Straw Prototype Beam Define Counter (BDC)

- 1st Beam Test for Straw+ECAL
 - During 4-13, March 2016
 - The beam debut for COTTRI

More details in 22aCA-7Y. Fujii ECAL Prototype ECAL Preamp

- The $\mu^+ \rightarrow e^+ \gamma$ decay is one of the powerful probes to investigate the BSM
- Most stringent upper limit on LFV processes is set by MEG
 - $\mathbf{B}(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13} @ 90\%$ C.L. $\rightarrow 4.2 \times 10^{-13}$ with a sensitivity of 5.3×10^{-13} including several updates
- Preparations for MEG II is ongoing to start the data taking from 2017
 - Aiming to achieve 10 times higher sensitivity than that of MEG
 - All detectors will be improved
 - LXe detector: Inner face PMTs \Rightarrow VUV-sensitive MPPCs
 - Drift chamber: 16 drift chamber modules ⇒ Stereo wire drift chamber with a single gas volume
 - Timing counter: Bar counter \Rightarrow Pixelated counter
 - Additional detectors are also being developed to further improve the sensitivity
- Other muon CLFV searches will be started at the same period
 - Complementary searches with comparable sensitivities as that of MEG II
 - The COMET experiment is searching for μ -e conversion with a sensitivity of 10^{-17}
 - Several detector R&Ds are ongoing now
 - Very exciting stage!

Backup

MEG Experiment

Datasets

- Signal Region
 - Use datasets of 2009-2010 combined, 2011 only and 2009-2011 combined
 - $48 \le E_{\gamma} \le 58$ MeV,
 - $50 \le E_{\rm e} \le 56$ MeV,
 - $|\phi_{e\gamma}| \le 50 \text{ mrad and } |\theta_{e\gamma}| \le 50 \text{ mrad}, + \text{Select only a pair of } e-\gamma$
 - $|t_{\mathrm{e}\gamma}| \leq 0.7 \mathrm{~ns},$
 - \Rightarrow 86% of analysis efficiency
- Time sidebands
 - Check the reliability of acc. BG PDFs before unblind
 - Analyze the regions of $|t_{e\gamma} \pm 2 \text{ ns}| < 0.7 \text{ ns}$
- Angular sidebands
 - Check the reliability of RMD PDFs before unblind
 - Use 100 mrad off-axis regions for $\phi_{e\gamma}$ or $\theta_{e\gamma}$

- E_{γ} PDF: signal \Rightarrow CEX data, RMD \Rightarrow theoretical+measured detector response, accidental \Rightarrow sideband
- $T_{e\gamma}$ PDF: signal/RMD \Rightarrow measured RMD, accidental \Rightarrow flat

- Old PDF for positron observables (category PDF)
 - I. Positrons are divided by two category PDFs by their "quality" e.g. #of hits, Δt between DC/TC
 - II. PDF parameters are determined for each category separately
- New PDF (per-event PDF)
 - III. Determine the event-by-event uncertainties (σ'_x) using the error matrix provided by the fitting
 - IV. Calculate the scaling parameters (s_x) to convert the per-event uncertainties to resolutions from sideband data
 - V. Correlations are mostly calculated from the MC
- Y. Fujii 2016/3/21

• Further check for sideband data

Table 7.2: Time sideband results without including systematic uncertainties.

Dataset	\mathcal{B} best fit	\mathcal{B} upper limit
2009-2010 negative	$7.7 imes 10^{-13}$	$3.1 imes10^{-12}$
2009-2010 positive	$-2.8 imes10^{-13}$	$1.1 imes10^{-12}$
2011 negative	$3.7 imes10^{-15}$	$1.7 imes10^{-12}$
2011 positive	$2.1 imes 10^{-13}$	$1.4 imes10^{-12}$
2009-2011 negative	$3.5 imes10^{-13}$	$1.6 imes10^{-12}$
2009-2011 positive	$7.8 imes 10^{-14}$	$8.1 imes 10^{-13}$

Table 7.4: Angle sideband results without constraints on the number of backgrounds (Uncertainties are in 1σ). N_{sig} = 0に固定

	Signal, RMD無しのtime sidebandは実験感度と無矛盾な結果	Dataset	$\langle N_{\rm BG} \rangle$	$\langle N_{\rm RMD} \rangle$	$N_{\rm obs}$	$\hat{N}_{ m BG}$	$\hat{N}_{ m RMD}$
▶ BG PDFは問題無し		2009-2010 negative ϕ	1120 ± 17	34 ± 3	1120	1077 ± 35	40 ± 15
		2009-2010 positive ϕ	1169 ± 17	36 ± 3	1247	1212 ± 39	46 ± 18
	Angle sidebandのフィット結果, RMD観測数は期待値とべこ	2009-2010 negative θ	1123 ± 17	39 ± 4	1120	1083 ± 36	35 ± 16
	フィットで無矛盾	2009-2010 positive θ	877 ± 15	24 ± 2	962	963 ± 34	1 ± 12
►	▶ RMD PDFも問題無し	2011 negative ϕ	1130 ± 18	35 ± 4	1163	1132 ± 37	27 ± 15
		2011 positive ϕ	1189 ± 18	37 ± 4	1241	1195 ± 38	47 ± 16
		2011 negative θ	1131 ± 18	41 ± 4	1233	1208 ± 38	27 ± 15
	いよいよ信号領域を解析!	2011 positive θ	976 ± 17	25 ± 3	1016	979 ± 34	37 ± 14
		2009-2011 negative ϕ	2228 ± 24	69 ± 7	2283	2210 ± 51	66 ± 21
		2009-2011 positive ϕ	2365 ± 25	73 ± 7	2488	2404 ± 54	93 ± 24
		2009-2011 negative θ	2251 ± 24	80 ± 8	2353	2292 ± 52	61 ± 22
		2009-2011 positive θ	1855 ± 22	49 ± 5	1978	1939 ± 48	41 ± 18

Systematics

- ・バックグラウンドは高い精度でコントロールされてお り,不定性が小さい
- Signal PDFの不定性は比較的大きいが,観測されたN_{sig}
 が小さかったため,崩壊分岐比の90%上限値に対する
 影響は少ない
 - 2009-2011データに対して数%程度の影響

Center of $\theta_{e\gamma}$ and $\phi_{e\gamma}$		
Positron correlations		
E_{γ} scale		
$E_{\rm e}$ bias		
$t_{\rm e\gamma}$ signal shape		
$t_{\rm e\gamma}$ center		
Normalization		
E_{γ} signal shape		
E_{γ} BG shape		
Positron angle resolutions ($\theta_{\rm e}, \phi_{\rm e}, z_{\rm e}, y_{\rm e}$)		
γ angle resolution $(u_{\gamma}, v_{\gamma}, w_{\gamma})$		
$E_{\rm e}$ BG shape		
$E_{\rm e}$ signal shape		
Angle BG shape		
Total		

 \mathbf{R}_{sig} **Distribution**

• Relative signal likelihood defined as follows: (Large $R_{sig} = signal like events$)

$$R_{\rm sig} = \log_{10} \frac{L_{\rm sig}}{0.1 \cdot L_{\rm RD} + 0.9 \cdot L_{\rm BG}}.$$
(7.1)

Likelihood Curve

2009-2013

