µ⁺→ e⁺γ 探索実験 MEG I の 2015年コミッショニングの 結果と2016年の計画

<u>Y. Uchiyama</u> (The University of Tokyo) for MEG II collaboration

The 71st JPS Annual Meeting (19 Mar, 2016)

MEG II Experiment

- Search for lepton-flavor violating μ → e γ decay
 With unprecedented sensitivity
 4 × 10⁻¹⁴
 - ×10 improvement from MEG
 - High-intensity frontier experiment
- Improve every resolution by factor 2

 e^+

 Aim at physics data taking from <u>2017</u>

What we did in 2015

- Test the mechanical integrity of the MEG II design
 Complicated system of beamline-spectrometer
- Beam study, tuning.
- Then, finally a beam test with e⁺s from muon decays and a part of final timing counter.
- In parallel, carry forward all the detector construction.

Best achievement in 2015

Reconcession of the second sec

March 19, 2016 YUSUKE UCHIYAMA

Pilot Run in 2015

We achieved

- Build ¼ detector
- Hardware works properly
 NO dead channel
- Test Laser calibration system
 Laser pulse distribution into 8 counters.
- Test MEG-II electronics system
 Biasing OK, trigger works well.
 Figured out several problems in readout system.
- Test counters in MEG-II beam (Dec.)

Analysis of the data underway
 19pCA-11-3

A 3U crate manages 256 channels

March 19, 2016 YUSUKE UCHIYAMA

YUSUKE UCHIYAMA

Electronics problems

WaveDAQ system

Multi-functional board Amplifier, shaper, waveform digitizing, first level trigger & SiPM biasing.

 \square First test in the pilot run.

Confirmed several functionalities
 Biasing & triggering works well
 Basic waveform sampling succeeded.

Figure out several problems
 FPGA programming bug, mis cabling on board, lack of synchronization, missing calibration, and noise.

 $\bullet \rightarrow \text{consequences}$

Data quality of the pilot run is not good.

- Need intensive work to solve these problems before mass production
- Carry out another pilot run with modified electronics in June

A 3U crate manages 256 channels

- Electronics development takes more than expected
- Before confirmation of all functionality, never order mass production.

Not possible full system to be ready in 2016

LXe photon detector

22pAN-3-4

- 4092 MPPCs on 186 PCBs, ready for assembly.
- Assembled detector will be installed in the area in Jul.
- Test performance with 18-MeV γ line from Li(p, γ)Be (C–W accel.)

New BG-tagging detector (RDC)

- Downstream detector was constructed
- The functionality was tested with γ source (⁸⁸Y)
- Upstream detector (scintillating fiber) study pushed forward
 □ Influence on beam was directly tested in the beam study period
 □ Small impact → positive for
 - the adoption

March 19, 2016 YUSUKE UCHIYAMA

Target

- In pilot run 2015
 - \square 120-µm thick polyethylene target was used
 - with new target system implemented inside the DC inner wall
 - The new target system impact on beam will be carefully checked this May Some beam transmittance loss observed last year. Due to the target system, too close to beam axis?
- In pilot run 2016
 - Scintillating sheet target* will be used (130-µm thick BC-400)
 - An alternative candidate as target
 - Mechanically more rigid
 - Allow online monitoring of beam center/profile and intensity
 - □ Preliminary study done in 2015 shows a good result
 - * This is not an "Active target" with event-by-event reconstructing power

Drift chamber

- 2-m long stereo-wire drift chamber
 completely new system for MEG II
- Wiring on going
 4 frames / day. 468 frames necessary.
 To be continued till Aug.

• However, an incident happened.

Wire break

- On 8/Mar, during an elongation test (to nominal length)
- 13 50µm guard wires broke.
 Later, other 4 guard wires + 1 cathode wire broke
- Deep investigation is on going
 So far, no clear reasons found
 From the geometrical viewpoint, it is not possible.
- Due to this incident, wiring is now stopped.

17

PSI beam-time start

4	5	6	7		8	9	10	11	12
	Beam & target te	st	RDC te	st ri	un		DC ir	nstallation	
	C	Michel ru	n with						
		TC & imp	roved						LXe test
		elec.	•		LXe liq	uefaction,	purificatio	n	with C–W
LXe installation									

- Another pilot run (with TC, RDC, & modified elec.) is planned in Jun–Jul
- Full detector system will be ready in the end of this year.
- Engineering run in 2017 with full elec. \rightarrow physics run

Summary

Muon cLFV Sensitivity Comparisons

: 1/390 : 1/170

$BR = 4 \times 10^{-14} : 1 \times 10^{-16} : 2 \times 10^{-16}$

~MEG II goal

for AI target