1

MEG II実験のためのSiPMを用いた 陽電子タイミングカウンターのシミュレーションによる性能評価

Development of the Waveform Simulation for Positron Timing Counter with SiPM for MEG II Experiment

吉田昂平(東大) 他 MEG IIコラボレーション 日本物理学会 2016年春季大会@東北学院大学泉キャンパス

Topics

- MEG II experiment
- Timing Counter Upgrade
- TC Software
- Waveform simulation
 - Resolution for Single counter with noise
 - Simulation at multi counter setup
- Summary

MEG II experiment

- □ Search for charged Lepton Flavour violation decay $\mu \rightarrow e \gamma$ predicted in Beyond Standard Model (SUSY-GUT, see-saw model etc...)
- □ Now upgrading to aim for Branching ratio 4×10^{-14}
- \square Accidental background increase by double rate μ beam \rightarrow Detector performance is improved
- \Box It is necessary to measure the time, direction, energy for γ and e⁺ to identify the signal event

MEG II Detector

4

- Final result of MEG experiment 金子(19aAH-3)
- Pilot run in 2015 and engineering run for in 2016 for MEG II 内山(19aAH-4)
- Drift chamber
 e⁺ Tracking
 low mass materials
 and high efficiency

Timing Counter

- Timing measurement for the e
- at high precision
 - Simulation study:吉田(19pCA-1)
 - Initial result of engineering run : 西村(19pCA-2)
 - Analysis method for timing calibration : 中尾(19pCA-3)

•LXe *γ* -ray detector 家城(22pAN-3) 小川(22pAN-4)

•Radiative Decay Counter 岩井(19aAH-10) 中浦(19aAH-11)

> Muon beam Stopping rate $7 \times 10^7 \ \mu / s$

Timing Counter Upgrade

5

Pixelated Timing Counter

- hinspace To measure the time of positron from $\mu^+ o { heta}^+ \gamma$
- One counter consists of fast plastic scintillator and SiPM
- Total 512 counters at upstream and downstream
- It has good timing resolution by multiple hits
- Low pileup effect under high rate μ
- Good time resolution (~30ps) is demonstrated at the beam test

Timing Counter for MEG

Fast plastic scintillator+ SiPM

Single Counter

□ Fast Plastic scintillator BC422

- Rise time : < 20ps
- Light output : 55% of Anthracene
- Peak wavelength : 370 nm
- Light attenuation : 8cm
- □ 120×40×5mm³, 120×50×5mm³
- Covered by Mirror type reflector
 (3M ESR film) and black sheet (Tedlar)

SiPM (ASD-NUV3S-P High-Gain (MEG))

- 3×3mm²,3600pix made by AdvanSiD
- SiPM array (6series) on the PCB
- 2ch readout from both side of the counter
- SiPM and Scintillator connected by optical cement
- Optical fiber and support structure for timing calibration

<u>Timing Resolution ~75ps</u> (for 4cm counter)

Overall of TC software

Waveform simulation

- To evaluate performance and understand the detector
 - **Study the effects of pile up, dark noise, crosstalk ,after pulse for timing resolution**
- Waveform simulation method
 - 1. Scintillation photon is generated and tracked by MC
 - 2. Detected photon timing at SiPM is got
 - 3. Convolute the photon pulse and 1 p.e. response of SiPM array

Waveform Simulation for Single Counter - Previous JPS meeting-

*日本物理学会2015年秋季大会 吉田(26aSN03)

*report better resolution than this value in previous JPS because of bug

Property Measurement for Single SiPM and implementation in waveform simulation

10

- Measure the single SiPM property to input to simulation
- Dark signal and Laser signal

Dark rate $\sim 2.3 \text{ MHz} (258 \text{kHz/mm}^2)$

- From poisson distribution : P(0)=N_{pede}/N_{tot} (k=0)
- Including the after pulse within 3.5ns from the peak
- \rightarrow Implementation by adding random at this rate
- Crosstalk ~ 0.17 (preliminary)
 - N_{2p.e. and over}/N_{1p.e. and over}
 - \rightarrow Add 1 p.e. signal at neighbor cell in this possibility
- **Transit Time Spread(TTS)** $\sigma = 71.3$ ps
 - Measurement by using laser
 - \rightarrow Fluctuate the photon time at this sigma
- **D** Baseline noise $\sigma = 2.4 \text{mV}$
 - RMS of baseline noise
 - \rightarrow White noise following gaussian

Result of Waveform Simulation with Noise

- Not only waveform but timing resolution for single counter is also reproduced by included noise
- Included noise
 - White noise (set as reproducing real noise RMS)
 - Dark noise (measured value ~14MHz)
 - Crosstalk (measured value ~17%)
- After pulse of SiPM is not included

Noise scan in waveform simulation

- Dependence of the timing resolution for each noise
- Dependence for crosstalk and dark noise is small around measured value
- Noise RMS effect is most strong

TTS scan in waveform simulation

- Dependence of the timing resolution for TTS
- Estimated tts is in Plateau region
- Resolution is not depend on TTS around measured value

Simulation at multi counter setup

14

- Waveform simulation at multi counter setup
 - To estimate multiple hits resolution
 - To study pileup effect

Setup

- 9 counters (4cm counter:6, 5cm counter:3)
- 48MeV e⁺ beam
- □ Trigger event : Selecting the event of hitting reference counter(5×5×5 mm)
- Pileup event : Hit to whole of counter
- Mix the waveform of trigger event and pileup event to reproduce pileup

Trigger event

Result for multi counter setup

15

•High rate beam test result for michel positron

Result

- Timing resolution : ~30ps (9hits)
- We observed deterioration of resolution by pileup effect in high rate beam test
- Pileup effect is not reproduced in waveform simulation in actual pileup rate (70.2kHz from MC)
 - w/o after pulse

Summary and Prospect

Summary

- Single counter resolution is reproduced in waveform simulation by including some noise (Dark noise, Cross talk, White noise)
- Estimate noise and TTS effect for resolution
- Expected resolution(~30ps) is reproduced in multiple counter setup at 9hits
- Pileup effect is not reproduced in waveform simulation

Prospect

- Including after pulse effect
- Simulation at multi counter setup with after pulse
- Including reflector effect
- Time difference between SiPMs on the PCB
- Waveform simulation at actual TC setup

MC simulation -Single counter setup-

- □ A test counter (BC422,120×40×5 mm³, no wrap, SiPM array on each side)
- A reference counter (BC422, 5×5×5 mm³, wrapped by teflon, 1SiPM) is set behind test counter
- Irradiating e⁻ from ⁹⁰Sr
- Selecting the event of hitting reference counter

Scintillator setup	
Scintillation yield	8400photons/MeV
Attenuation length (adjusted)	20.6 cm
Refractive index	1.58
Rise time	0 s *
Decay time	1.6 ns
* Reference : R. A. Lerche et al. "Rise Time of BC-422 Plastic Scintillator<20ps", DOI:10.1109/NSSMIC.1991.258899	

Single SiPM After pulse

アフター見積もりと実装法

ハイレートビームテスト@PSI

PSIのπE5ビームラインのミューオンビームをターゲットに照射し、ミッシェル陽電 子を用いたハイレート試験でパイルアップの影響を検証

□ MCにより予期されるヒットレートにおいても36.5psの優れた時間分解能

波形解析

1. ch毎のconstant fraction time(11%)をシグナルの時間とする
 2. 2chのシグナル時間の平均 (t_{ch1}+t_{ch2})/2 を各カウンターのヒット時間とする
 3. カウンターのヒット時間とレファレンス時間(RC1,RC2のヒット時間の平均)

Measurement for Single SiPM

- It is necessary to measure these topics for single SiPM to get 1 p.e. response from SiPM array and input property to simulation
 - Ip.e. waveform of single SiPM
 - 🗖 Gain
 - Dark rate
 - Crosstalk probability
 - Single p.e. timing resolution (SPTR)

PDE setting

- □ New TTS is decided and PDE spectrum is changed for AdvanSiD SiPM →reset pde, noiserms
- PDE scan to decide input PDE in gem4 by matching height with real counter

NoiseRMS setting

25

Noise RMS scan to match with noise RMS of real measurement

- SiPM timing resolution resolution for N_{p.e.} $\frac{\sigma}{\sqrt{N_{p.e.}}} \oplus \frac{\sigma_{laser}}{\sqrt{N_{p.e.}}} \oplus \frac{\sigma_{noise}}{N_{p.e.}} \oplus \sigma_{const}$
 - **True resolution** $\sigma_{\text{tts}}/\sqrt{N}$
 - Laser duration $\sigma_{laser}/\sqrt{N} \rightarrow \sigma_{laser}=25.5$ ps (from catalog)
 - Noise effect $\sigma_{\text{noise}}/N \rightarrow$ by fake pulse
 - lacksquare Constant term(from electronics jitter and analysis fluctuation) $\sigma_{
 m const}$
 - \rightarrow by resolution at high p.e.

27

- Fake pulse convoluted Op.e. event and N_{p.e.} template wavaform
- The template waveform don't have fluctuation
- Estimate the resolution of fake pulse for $N_{p,e}$ to estimate the noise effect for $\sigma_{\rm noise}/N_{\rm p.e.}$

$$\sigma_{\text{noise}} = 99.8 \text{ps}$$

[mV]

20

15

10

5

 $rac{\sigma}{\sqrt{N_{p.e.}}} \oplus rac{\sigma_{laser}}{\sqrt{N_{n.e.}}}$

 σ_{noise}

 $\oplus \sigma_{const}$

28

□ Timing resolution of SiPM at high p.e. (~1000p.e.) by laser light

cftime[0]-cftime[3] {noiserms[0]<0.003&&cftime[0]<0&&cftime[3]<0}

- Laser duration $\sigma_{laser} = 25.5 \text{ ps}$
- □ Noise effect $\sigma_{\text{noise}} = 99.8 \text{ps}$
- □ Constant term $\sigma_{\text{const}} = 33.5 \text{ ps}$

 \rightarrow Transit time spread $\sigma_{\rm tts} = 71.3$ ps

Red line is fixed at 1 p.e. point but it is not match because of CTAP?

Waveform of pileup event

Waveform for single SiPM

- □ 1p.e. average waveform for single SiPM from 100 waveforms
- Selecting the waveforms which have no after pulse, flat baseline
- Fitting function : [0]*(exp(-t/[τ _rise])-[1]*exp(-t/[τ _spike])-(1-[1])*exp(-t/[τ _tail]))

SiPM circuit model

32 Circuit model of N pixel SiPM Cathode Rq Cq Cq*(N-1) Rq /(N-1) Cg C_{D} C_D*(N-1) Anode **Fired** pixel (N-1) pixels

- Rq : Quenching resistance
- Cq : Stray quenching capacitance
- \Box C_{D} : p-n junction capacitance
- Cg : Stray grid capacitance
- □ N : Number of pixels

Measurement to decide parameter

- Rq is measured by I-V curve at forward bias
- Cq, C_D, Cg is estimated by SiPM Gain and LCR measurement

$$Q = V_{OB}(C_D + C_q)$$

• Equivalent circuit for LCR measurement

$$R_{\rm p} = \int_{C_{\rm p}} C_{\rm p}$$

$$C_{\rm D} = \sqrt{\frac{1 + \omega^2 (C_{\rm D} + C_{\rm q})^2 R_{\rm q}^2}{\omega^2 N_{\rm tot} R_{\rm q} R_{\rm p}}}$$

$$C_{\rm g} = C_{\rm p} - N_{\rm tot} C_{\rm D} + \frac{\omega^2 C_{\rm D}^2 R_{\rm q}^2 N_{\rm tot} (C_{\rm D} + C_{\rm q})}{1 + \omega^2 R_{\rm q}^2 (C_{\rm D} + C_{\rm q})^2}$$

Reference : S. Seifert et al. " Simulation of Silicon Photomultiplier Signals", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, Vol. 56, No. 6:3726-3733, 2009

Quenching resistance

- SiPM pixels consist of diode and quenching resistance
- quenching resistance is measured from I-V curve at forward bias
- $\square Rq = 974 \pm 13 k\Omega$

LCR measurement

34

- Rp and Cp is measured by LCR meter (HIOKI LCR HITESTER 3532-50)
- LCR meter input sine wave and measure impedance and phase difference by Four-terminal Method
- Rp and Cp are saturated at high frequency and high bias
 - So, we used the value at high frequency and high bias
 - •From I-V curve Rq \sim 973.8 k Ω
 - From SiPM Gain and LCR measurement C_D ~ 97.0 fF Cq ~ 7.04 fF Cg ~ 141.4 pF

remainder

SPICE simulation for single SiPM

SPICE simulation Cathode MppcK AMP **R7 R8** C11 C10 SiPM {rpix/nfire} {rpix/(npix*nmppc-nfire)} {nfire*cpixpar} {cpixpar*(npix*nmppc-nfire)} meas ans1 MAX V(Charg C12 Vdiode {cgpar **C9 C8** {cpix*(npix*nmppc-nfire)} {nfire*cpix} Anode MppcA 0.025 measured 1pe. waveform Adjusted parameter Rq : 973.1k Ω → 1150k Ω (18.1 %) Simulated 1 p.e. waveform Cq : 7.04fF \rightarrow 14.0fF (98.9 %) 20m\ Adjusted waveform 0.00 100ns 0.15 0.2 0.45 t[s]

Input the measured circuit parameter and simulate the 1 p.e. waveform of single SiPM

- The simulated waveform don't match measured waveform
- The parameters is adjusted as reproducing measured waveform
- Probably, the uncertainty for Cq is large

>

SPICE simulation for SiPM array

- Simulating 1p.e. waveform for SiPM array by using the adjusted parameter
- Shaping by pole zero cancelation
- Including the actual long cable effect by measurement
- Convoluting with photon timing pulse from MC

