MEG II実験液体キセノン検出器の インストール及びセンサー試験

→ 次のトークで

Se

東大素セ 家城 佳、 他 MEG II コラボレーション

 $\mu \rightarrow e\gamma$ search

New generation LFV experiments can explore the region predicted by BSM

2

LXe detector

- Measures the $\begin{cases} energy \\ position \\ timing \end{cases}$ of γ -rays.
- Readout: 2" PMTs × 668 + 12mm MPPCs × 4092
 - \rightarrow Granular & uniform coverage
 - \rightarrow x2 resolution improvement expected from MEG

Energy resolution ~1%

Position resolution ~2.5mm

Final stage of construction

Installation & pipe connection

Filling LXe to the detector

- 1. Liquefaction (GXe storage tanks \rightarrow 1000*l* LXe tank)
- 2. Vacuum evacuation of the detector (to $\sim 2x10^{-3}$ Pa)
- 3. Pre-cooling of the detector (~175K)
- 4. LXe transfer from 1000*l* tank to the detector

LXe transfer

View from a USB camera installed inside the detector

Position monitoring

MPPC position was scanned with laser after installation↓

However, inner cryostat deforms by heat shrink and LXe load.

→ Monitor the movement by position sensors

Position monitoring

direction)

3 sensors are installed at 4 different position.

X-ray survey

Another method for position check: Measure MPPC signal from the X-rays.

moving stage

& rotator

⁵⁷Co source + collimator

X-ray (124, 132 keV)

> Position of the stage is measured by laser and monitored by laser and bubble level + camera.

X-ray survey

Scan was performed in two directions in 1mm step. X-ray spot size ~ 2 mm x 30 mm

Event rate increase was successfully observed around X-ray irradiated region. Analysis is ongoing.

LXe monitoring & control

We built a slow control system using special modules (SCS2000) developed at PSI

SCS2000 can:

- readout the sensors (bias & ADC)
- automatically or manually adjust the cooling power (refrigerators and LN₂) by firmware
- allow users to monitor & control via internet

LXe monitoring & control

Normal (stable) operation: Temperature & pressure is maintained by adjusting electric heater power.

Emergency or special operation: Open LN₂ valves for additional cooling

Firmware of SCS2000 does the control automatically.

- Heater power adjustment (PI control)
- LN₂ valve open at high temp. or high pres.
- Issue an alarm in case of emergency

LXe monitoring & control

Overall system is monitored & controlled from web browser.

Purification

Purity of Xe affects the scintillation (light yield, attenuation, pulse shape)

Two types of purifications are ongoing in parallel for ~2 months.

 Gas phase (getter) Slow (GXe ~35 *l*/min) Removes H₂O, O₂, CO, CO₂, N₂, H₂...

 Liquid phase (molecular sieve) Fast (LXe ~40 *l*/hour) Removes H₂O

Purification and detector stability

- Xe purity is improving (light yield increased ~10 times over 2 month.) Currently the light yield is ~85% of what we achieved in MEG.
- Temperature and pressure are sometimes unstable due to LXe purification pump trouble and due to heat income in LXe purification line.

 \rightarrow Once we finish purification, the detector will be more stable.

Status & schedule

- Construction & installation are finished!
- LXe operation started. Purification is ongoing.
- MPPC & PMTs are being tested → Next talk (S. Ogawa) with limited amount of DAQ channels available now (~1000ch)
- Detector monitoring is started → Next next talk (N. Matsuzawa)
- Pilot run will start in the end of 2017, followed by the engineering run and physics run in 2018.

Summary

- LXe detector is successfully installed.
- Position of the detector is measured by wire sensors and X-ray.
- Slow control system is built. Purification is ongoing. (so far achieved ~85% of light yield in MEG)
- Commissioning of MPPC & PMTs is also ongoing.
- Monitoring of the detector is started.

_Next talks