### MEG II実験陽電子タイミングカウンターの 放射線損傷による影響の評価 Evaluation of radiation damage effect on positron timing counter for MEG II experiment

宇佐見正志、他MEG IIコラボレーション 2017年秋季大会(9/13) 宇都宮大学峰キャンパス

## Outline

### Introduction

- MEG II Experiment
- Motivation : Radiation Damage Problem
- SiPMs information
- Measurement for Main SiPM
- Measurement for New SiPM
- Summary

## **MEG II experiment**

**Liquid Xe Detector Radiative Decay** Counter Features :

**Drift Chamber** 

The most sensitive  $\mu^+ \rightarrow e^+ \gamma$  search : Sensitivity : ~  $4 \times 10^{-14}$ (×10 better than MEG experiment !)



#### **Timing Counter(TC)**

- ✓ Segmented scintillation counter(512 pixels)
- ✓ 6 series SiPM+fast scinti.
- ✓ Using multihit information, time resolution ~ 30ps



1 pixel counterとPCBの写真は https://meg.web.psi.ch/docs/talks/JPS/2015a/yoshida jps2015a.ppt xより引用

## **Radiation Damage Problem of SiPMs**

### **Motivation**

- Obvious increase of sensor current in previous pilot runs due to radiation damage
- ✓ Estimated effect of radiation damage in MEG II
  - > Maximum fluence : ~  $1.4 \times 10^{11} [e^+/cm^2]$
  - > Extrapolated from current increase measured in the last pilot run : ~ 100  $\mu$  A
- We must understand radiation damage effect on counter performance
  - How the radiation damage affects 6 series SiPMs performance?
  - Can we achieve our operation requirement?
- ✓ <u>TC Operation Requirement :</u> achieve ~30ps during 3 years physics run

#### Observed current increase at the past pilot run



## Irradiation test of SiPMs

### □Main : ASD-NUV3S-P High-Gain (MEG)

>Used in most of counters

>3mm x 3mm (50  $\mu$  m pitch), surface mount

>Operation range : Vbd + 2~3.5

Current increase was estimated ~  $100 \,\mu$  A(6 series) during MEG II physics run Production line closed

>Irradiated with Sr90(37MBq)

### □New version : ASD-NUV-SiPM3S-P

➤To be used for spare counters
>3mm x 3mm (40 µ m), surface mount
>Wider operation range(Vbd + 2~6) and higher gain
>Developed by AdvanSiD after the first TC pixel production
>Beam test was done at Beam Test Facility(BTF) in Italy

## Outline

- Introduction
- Measurement for Main SiPM
  - Irradiation & experimental setup with Sr90
  - Result of waveform analysis
  - Solution for current increase
- Measurement for New SiPM
  - Beam test setup
  - Time resolution measurement
- Summary

## Irradiation & IV characteristics

#### Irradiation & measurement

✓ 6 SiPMs were Irradiated by  $e^-$  from Sr90(37MBq)

- $\succ$  Roughly 70 hour each  $\times$  4 times irradiation
  - Roughly 280hour in total
- ✓ Measure time resolution & IV characteristics







## **Counter Assembly**

For this test, we made set up for time resolution measurement of single counter <u>Requirement</u>

- ✓ Set & remove SiPMs frequently
- ✓ 6 series circuit at each side
- ✓ Precise & stable alignment b/w scintillator and SiPMs
- ✓ Simple structure & not so many parts





Parts 1. Fix the scintillator Parts 2. Square hole for 6 SiPMs, and small circle hole for spring test probe pin  Optical grease is put on scintillator

Spring test probe pin push the SiPMs onto the scintillator



Assemble



Parts 3.

Fix spring test probe pin on this board Make 6 series circuit with parts 2.

### **Time resolution Measurement Setup**



## **Typical Waveform around optimal voltage**



## Time resolution after irradiation



Data taking was done 2 times or 3 times(only  $1^{st}$ ) Error shows the  $\sqrt{(\Sigma (x-x_mean)^2/(n-1))}$  of each measurement

Current increase worsens time resolution  $> \sim 39\%$  deterioration after 2<sup>nd</sup> ( $\sim 140$  hours) irradiation (I ~ 94  $\mu$  A) at first optimal voltage(best point) 30 degree, Vbd = +16.5 V4<sup>th</sup> 3rd 2nd 1st before 50 100 150 0 200 current[ $\mu$  A](w/o source) beforeは+~16.2など、やや16.5からはばらつく

## Time pick up parameter optimization

# ✓ Constant Fraction(CF):pick up at XX% of peak height ➢ After irradiation, we checked and optimized CF value(XX = 20,30,40 or 50%)

~ 29% deterioration around  $100 \,\mu \, A(2nd)$ Time resolution vs. current @ Vbd+~16.5V,30deg 170 Time resolution[ps] 160 1st 4<sup>th</sup> 3rd 30% 150 50% 40% 2nd 140 40% 130 CF=20% 120 110 50 100 150 200 0 current[ $\mu$  A](w/o source)

## Cooling : 30degree -> 10 degree



## Time pick up parameter optimization

# ✓ Constant Fraction(CF):pick up at XX% of peak height ➢ After irradiation, we checked and optimized CF value(XX = 20,30,40 or 50%)



## Summary of Irradiation test for Main SiPM

- We investigated radiation damage effect on 6 series SiPMs
- Time resolution worsened by ~29% around current increase level expected for 3-years operation in MEG II(~100  $\mu$  A)
- By cooling down to 10deg and parameter optimization for time-pickup analysis, deterioration is suppressed to ~5%
- If we can operate TC at 10 degree, the radiation damage effect is almost negligible!

## Outline

### Introduction

- Measurement for Main SiPM
  - Irradiation & Experimental Setup with Sr90
  - Result of waveform analysis
  - Solution for current increase

### Measurement for New SiPM

- Beam test setup
- Time resolution measurement
- Summary

## Irradiation Test of New SiPMs at BTF

- ✓Positron irradiation was done @BTF, Frascati
- ✓ Expected total dose during physics run <  $\sim 1.3 \times 10^{10} [e^+/SiPM]$
- ✓ Actual total dose at BTF :  $\sim 1 \times 10^{11} [e^+/SiPM]$

≻8 times larger irradiation



## Result

Deterioration of time resolution seems to be smaller

> Even better time resolution(~110ps) for much higher dose at 10 degree



## Summary

- Current increase due to radiation damage was observed, we checked the effect on time resolution with dedicated set up.
- Main : Using Sr90, we checked radiation damage effect
  - Around ~ 100  $\mu$  A @ 30deg, there was ~29% deterioration
  - By operation at low temperature, deterioration can be suppressed to  $\sim 5\%$
- New : At BTF irradiation test, we checked radiation damage effect
  - Radiation tolerance is sufficient for MEG II experiment
- System for operation at lower temperature is being developed, and will be tested.

## Back up

## **MEG II experiment**

The most sensitive  $\mu^+ \rightarrow e^+ \gamma$  search experiment in the world with the most intense DC muon beam at PSI

### ✓ In Standard Model

strongly suppressed and cannot be found by experiment

# ✓ In Beyond Standard Model with SUSY-GUT, SUSY-seesaw model …

 $Br(\mu^+ \rightarrow e^+ \gamma)$  becomes larger and we can find by experiment !

<u>To discover  $\mu^+ \rightarrow e^+ \gamma$  means to discover new physics !</u>

## Reference side pulse height



## **Reference side time resolution**

Reference side time resolution 2.5E-10 2E-10 1.5E-10 最初の点 (152.5V)波高 が小さく、統 1F-10 計が少ない 5E-11 0 150 152 154 156 158 160 162 164 166 168 170

## Irradiation side pulse height



## SiPMs current monitor at 27V

| SiPM/irradiation | 0          | 1           | 2           | 3           | 4           |
|------------------|------------|-------------|-------------|-------------|-------------|
| 1                | 1057 0007  | 45000.0007  | 60000 F     | 04400 0007  | 05040.0007  |
| L                | 1657.8667  | 45633.8667  | 63280.5     | 84428.3667  | 95042.8667  |
| 2                | 1565.7333  | 34364.4     | 62130.6     | 76460.5667  | 95245.3333  |
| 3                | 2658.4667  | 52697.5     | 71533.5667  | 92707.7667  | 105351.9    |
| 4                | 1390.7667  | 28652.7333  | 56494.3     | 70718       | 88781.4333  |
| 5                | 2784.9     | 40051.4667  | 70129.8667  | 92391.6667  | 104784.9667 |
| 6                | 2305.1667  | 52769.4     | 72692.5     | 87207.9333  | 105961.1333 |
| average          | 2.06048335 | 42.36156112 | 66.04355557 | 83.98571668 | 99.19460555 |
| STDEV            | 0.59960515 | 9.829402921 | 6.405944149 | 8.831454687 | 7.158465668 |