

MEG II実験液体キセノン検出器の ビーム環境下での性能評価

In-beam performance of MEG II liquid Xe detector

小川真治、他MEG IIコラボレーション @日本物理学会 第73回年次大会 2018.03.25

Table of contents

1. Introduction

2. Pilot run 2017 & In-beam detector performance

MEG II experiment

Upgrade of MEG experiment

- Searches for $\mu \rightarrow e\gamma$.
- μ⁺ stopping rate will be doubled
 - $3 \times 10^7 \, \mu/s \rightarrow 7 \times 10^7 \, \mu/s$
- Detection efficiency will improve.
- Resolutions of all detectors will become half.
- New detector for background tagging will be introduced

Expected sensitivity: 6 × 10⁻¹⁴

 One order of magnitude better than MEG

Reference : "The design of the MEG II experiment" . arXiv:1801.04688

LXe detector upgrade

MEG II

We have upgraded LXe detector for MEG II to significantly improve the performance.

We have replaced 216 2-inch PMTs on the γ-entrance face with 4092 12 × 12 mm² MPPCs.

- Better granularity
 - Better position resolution
- Better uniformity of scintillation readout
 - Better energy resolution
- Less material of the γ-entrance face
 - Better detection efficiency

Expected performance

• Significant improvement of all resolutions and efficiency are expected.

Detector performance for signal γ-ray

	MEG (measured)	MEG II (simulated)
Position	~5 mm	~2.5 mm
Energy	~2%	0.7 - 1.5%
Timing	62 ps	40 - 70 ps
Efficiency	65%	70%

Table of contents

1. Introduction

2. Pilot run 2017 & in-beam detector performance

LXe detector in 2017

- LXe detector in 2017
 - Detector commissioning
 - LXe control & purification. Performance measurement of all sensors. etc...
 - Reference : "Commissioning of all MPPCs for MEG II LXe detector" • at "JPS. 2017年秋季大会"
 - Pilot run with muon beam. : This talk
 - ~Two week beam time at the End of 2017 Dec.
 - y-ray DAQ from radiative muon decay and Michel positron annihilation.
- In-beam performance estimation of detector.
 - Detector stability : OK
 - Gamma-ray DAQ : OK
 - Detector performance estimation
 - Position resolution : Ongoing. \rightarrow **25aK206-3**

- Timing resolution : OK
- **Energy resolution : Noise problem found**

Detector stability

- Detector stability is successfully monitored.
 - MPPC gain
 - PMT Gain : 4% gain decrease by aging effect.
 - Light yield : Stable at 4% precision.
 - etc...

MPPC Gain

- ~1000 MPPCs operated in LXe.
- Monitored by two methods.
 - By MPPC 1 p.e. charge. (Absolute meas. of gain.)
 - By LED charge at fixed light intensity. (Relative meas. of gain change.)
- Gradual change of gain in both methods.
 - correlated with LXe temperature.

Similar method with MEG.

MPPC Gain History (All channel average)

Gamma-ray DAQ

- Gamma-ray data taking was successfully performed.
 - Trigger on sum of MPPC waveform. (threshold: 30-45 MeV)
- Use WaveDREAM (electronics developed for MEG II) for readout.
 - Read out 25% of detector. (960 MPPCs + 192 PMTs)

Gamma-ray DAQ

Zoom in

Granularity improvement by MPPC

Gamma timing resolution in MEG II

- Background
 - In the previous MC study,
 MEG II timing resolution can be 40-70 ps depending on the noise level.
 - Reference : "Improvement of the event reconstruction method for the MEG II liquid xenon detector" at "JPS. 2016年年次大会"
- Goal : Check timing resolution in real noise environment.
 →Perform even-odd analysis.

 $argma^{"}\sigma_{absolute}(T_{\gamma})$ " is a part of " $\sigma_{even-odd}(T_{\gamma})$ ". Difference is "TOF uncertainty of hit position" etc...

How to reconstruct gamma timing

- Gamma timing is reconstructed from timing from MPPC & PMT waveforms.
 - Timing extraction by waveform analysis
 - + χ^2 min fit of time information from all ch.

Timing resolution

- Even-odd timing resolution is 44 ps @ 50MeV.
- MC is consistent with data.
 - same readout ch, p.e. statistics, same noise level
- 50 ps absolute resolution can be expected in the final configuration.
 →Indicates ~15% sensitivity improvement from MEG II nominal scenario.
- Next step is to measure the absolute resolution. -> Planned in 2018.
 - TOF uncertainty (position resolution).
 - Effect from coherent noise.

Tγ resolution	Even-odd	absolute
Data	44 ps	???
MC w/ noise	44 ps	50-52 ps

Energy resolution & noise problem

14

- Energy of γ : reconstructed from sum of charge of all MPPCs and PMTs.
 → Easily affected by coherent noise.
- Large low-frequency coherent noise was observed.
 - ~ 1% of signal γ . (1/4 of detector) \rightarrow 2-4% by read out whole detector.
 - Our goal of Eγ resolution is 1%.
 →Needs to be reduced by factor of 2-4.
- Effort to reduce it is ongoing both from hardware and software.

Summary

- As a final phase of detector commissioning, pilot run of LXe detector was carried out. Detector performance is being estimated.
- Detector stability was successfully monitored.
- Data taking of gamma-ray from muon decay was carried out.

%Position reconstruction
: 25aK206-3

• Timing resolution by even-odd analysis is estimated to be 44 ps in real noise environment.

→Absolute timing resolution is expected to be 50ps, which indicates 15% sensitivity improvement from nominal scenario.

- Low frequency coherent noise was found and it affects energy resolution.
 - \rightarrow Needs to be reduced by factor 2-4. Investigation ongoing.

- Electronics to read out all channels

 + monochromatic gamma-ray source will be available.
 → Energy resolution measurement.
- Reference timing counter

 + coincident two γ from π⁰ will be available.
 → Absolute timing resolution measurement.
- %R&D of reference counter : 25aL401-5

 Engineering run of all MEG II detectors will be done in 2018, and physics data taking will start from 2019.

BACKUP

$\mu \rightarrow e\gamma$ search

- We search for charged **lepton flavor violating decay of muon**, μ->eγ.
- Prohibited in SM, detectable branching ratio in some BSM model
- Main background is the accidental background.
- Detector resolutions, especially energy resolution of γ-ray, are important to effectively distinguish the signal event from the accidental background.

Photo sensor used for beam test

• We read out 704 MPPCs + 192 PMTs.

- Due to the event rate issue, we are reading out 4 crate at the same time.
- MPPC @ over voltage 7V
- PMT @ gain 1.6x10⁶
 (~ same w/ MEG I)
- Several dead channels found.
 - 8 dead MPPCs
 - 4 dead PMTs

w/ TRG : red, yellow, magenta

19

Beam test

				Se	Nov/25 5th crate ready nsor calib. co	26 mmissioning
27 TC run start	28 periodical r	29 nonitoring	30	Dec/1	2	3
4	5 periodical r	6 CW failure nonitoring	7	8 6th crate ready	9	10
11 XEC run start	12 muon beam l	13 AmBe DAQ	14	15	16 AmBe	17 AmBe
18 circuit breaker down muon DAQ (19 v/ collimator	20 n generator muon b	21 Deam DAQ	22 Refrigerator stop		

MPPC gain vs temp.

MPPC Gain History (All channel average)

MPPC crosstalk & afterpulse

- Production lot dependence
 is observed (as is expected from R&D)^{1.7}
- Charge variation b/w production lot is largely suppressed by applying calibration.

Charge distribution (average) from a LED run

PMT Gain

PMT Gain

- PMT gain was measured by two independent methods.
 - 1. By LED intensity scan. (Absolute meas. of gain.)
 - Based on Poisson statistics of arrived # of p.e. from LED light.
 - 2. By charge of LED at fixed light intensity. (Relative meas. of gain change.)
- Those two methods shows consistent behavior with ~2 % precision.
- Gradual decrease of gain is aging of PMT under beam (known from MEG I).

LXe light yield

• aa

- PMT gain calibration by intensity scan
 + relative gain monitor by fixed intensity LED .
 - HV is decided to have
 1.6x10⁶ w/o COBRA b-field.
- PMT gain is affected by COBRA & beam.
 - The size of effect has individual difference.
- Gain history database will be prepared for each PMT.

* : Intensity scan Line : Fixed LED charge

Light yield

• aa

Event display example --pileup event-

26

Gamma-ray DAQ

- Trigger for gamma-ray DAQ
 - Trigger is generated
 when sum of MPPC waveforms
 exceeds a given threshold.
 - Threshold is set to 30-43 MeV.

- Energy spectrum
 - Energy scale calibrated at low energy (4.4, 9 MeV)gamma source.

Energy spectrum - AmBe-

- We took 4.4 MeV γ from AmBe.
- DAQ by self-trigger. Use WDB gain 5.
 - At WDB gain 1 (same config w/ signal),
 S/N ratio was too bad to trigger 4.4MeV.
- Offline event selection by Q/A of waveform to reject alpha event.

Very Preliminary

Energy spectrum -n generator-very Preliminary

- We took 9MeV γ from neutron generator.
- DAQ by self-trigger. Use WDB gain 5.

Rough estimate of energy scale ⁴

- AmBe & n generator is consistent w/ 1% precision.
- From AmBe and n generator, 52.8MeV is estimated to be corresponding to "nsum2 = 13.7x10⁶"
- This is roughly consistent w/ beam γ spectrum.

Reconstructed energy in MC

• Energy deposit > 48MeV

Time walk calib.

- Photo sensors are divide into 6 groups.
 - MPPC Lot A-D
 - Outer PMT
 - Side PMT.
- Time walk effect even w/ constant fraction.
- Slight difference can be seen at smaller # of p.e.
 b/w Production Lots.
 (depends on analysis paramet

Asymmetric Dt distribution

- Asymmetric distribution of " $t_{pm} t_{walk} t_{TOF} t_{\gamma}$ " is observed.
 - @small # of p.e. MPPC.
- This asymmetry is taken into account in the Tγ reconstruction.
 - PDF of the fit is generated from this mean
- Parametrize by ExpGaus Fit.
 - Gauss + smoothly connected Exp.

One ch resolution.

Data & MC w/ noise gets consistent on sigma.

0.1

0.12

Effect of low-pass filter

- We can improve one ch timing resolution by using moving average low-pass filter.
- Filter probably eliminates high frequency noise.

Offset calibration

- Ch time offset can be obtained by checking " $t_{pm} - t_{walk} - t_{TOF} - t_{\gamma}$ " channel by channel.
- Some offset was observed.

Offset calibration

- RMS of MPPC time offset is ~ 160ps. consistent w/ Mitsutaka & Rina 's study.
- PMT is found to have larger distribution.

Even-odd resolution

- Data and MC w/ noise gets consistent at end point.
 - Still different at small qsum region.
 - Likely due to conversion depth difference.

Noise situation

aa

80 MHz noise template

• 80*n MHz component can be extracted.

120 MHz noise template

Result - FFT-

• High frequency noise is subtracted!

80MHz sync noise reduction

 There was one bad MPPC ch (voltage calib lost???), in the run I used before.

80MHz sync noise reduction works well also for MPPC.

Noise rms

- 44
- Thanks to the noise reduction, noiserms is improved from 1.7mV to 0.8mV.
- Still larger than MEG I level (~0.4mV).

