

Evaluation of Radiation Damage to VUV-MPPC for MEG II Liquid Xenon Detector

Rina Onda On behalf of MEG II collaboration The University of Tokyo

Y Detector of MEG II Experiment

γ detector

Inside LXe

- MEG II experiment searches $\mu \rightarrow e \gamma$ decay, which is one of charged Lepton Flavor Violation.
- Liquid xenon photon detector (LXe) detects enegy, position and timing of γ .
- Scintillation lights from liquid xenon are detected with PMT and MPPC.

Motivation

Estimated Radiation in 2018

Irradiation Source	Dose				
γ (Gy)	1×10^{-2}				
neutron (n/cm²)	2.7×10^{6}				
photon	2.5×10^{13}				

- We are suspecting degradation of MPPC PDE for VUV light in beam time of 2018.
 ← Radiation damage??
- Radiation effects on PDE of VUV-MPPC were not evaluated because it is known that there is no
 effect on PDE of other types at the dose level of MEG II.

Discussion on PDE Degradation

- The issue of the PDE degradation for the VUV-MPPC was discussed with HPK.
- Similar degradation is known for photodiode. QE of photodiode is reduced after strong UV light irradiation.
- Surface damage at Si-SiO₂ interface is most suspicious.
 - Ionizing particles such as γ , charged particle and VUV light can damage it.
 - The electric field near the interface can be reduced by accumulated holes from the ionization.

• Annealing can be effective to remove the accumulated charge.

Plans

- 1. PDE measurements for irradiated samples
 - irradiation source : γ , neutron and VUV light
 - Only PDE of VUV-MPPC irradiated by ionizing particles(γ , VUV light) will be degraded.
- 2. Annealing
 - Some VUV-MPPCs in LXe were annealed.
 - PDE of the annealed VUV-MPPCs will compared with those measured last year.
 - PDE is supposed to recover after annealing.
- 3. Taking series data with fixed environments this year
 - The data of beam time 2018 was taken under unstable environments: beam intensity, B-field, firmware update, TRG condition...
 - Calibration data was not taken so frequently.

PDE Measurements

- 1. γ /neutron irradiated samples
 - We had γ /neutron irradiated samples.
 - $\gamma: {}^{60}_{27}\text{Co} \longrightarrow {}^{60}_{28}\text{Ni} + e^- + \gamma @$ Takasaki Advanced Radiation Research Institute in Jan. 2015.
 - neutron: ${}^{9}\text{Be} + d^{+} \rightarrow {}^{10}\text{B} + n @$ Kobe University tandem accelerator in Jan. 2015.

	Dose of Sample	MEG II Expected	
γ (Gy)	$1.4~ imes 10^3$, $4.1 imes 10^3$	0.6	Dose levels of the samples are much
neutron (n/cm ²)	$4.8 \times 10^9 - 2.0 \times 10^{12}$	1.6×10^{8}	larger than expected values of MEG

- PDE was measured using scintillation light of LXe using α source
- 2. VUV light irradiated samples
 - A xenon lamp was used as a irradiation source.
 - PDE was measured using the xenon lamp.

PDE Measurement for γ /neutron Irradiated Samples

Setups

- MPPCs were installed in a chamber, which is filled with LXe. (two non-irradiated and six irradiated samples)
- α source was fixed in front of MPPCs.
- Signals were amplified with a amplifier and data was taken with a waveform digitizer.

PDE Measurement

Example of Charge Distribution

- PDE can be evaluated by comparing measured and expected number of photons from α source (^{241}Am)

$$PDE = \frac{N_{phe}}{N_{pho}}$$

• The expected number of photons can be calculated considering incident angle.

$$N_{npho} = rac{E_{lpha}}{19.6\,\mathrm{eV}} imes rac{\Omega}{4\pi}$$
 $E_{lpha}: 4.78\,\mathrm{MeV}, \quad rac{\Omega}{4\pi}: \sim 0.4\%$

• The measured number of photons can be calculated from a peak of a charge distribution using calibration factors.

$$N_{\rm pho} = \frac{Q_{\alpha}}{({\rm Gain}) \times ({\rm Excess \ Charge \ Factor})}$$

Calibration

Example of Charge Distribution

Example of Waveform

• The number of detected photons is calculated by

$$N_{\rm pho} = \frac{Q_{\alpha}}{({\rm Gain}) \times ({\rm Excess \ Charge \ Factor})}$$

• The calibration factors can be obtained by photo-electron peaks.

- The data was taken using LED (λ =390 nm, OSA Opto Light GmbH, OCU-400, UE390).

Gain

- Gain can be calculated by subtracting the mean of zero photo-electron peak from the mean of single photo-electron peak.
- Clear linear correlations b/w gain and $\rm V_{\rm over}$ were observed.

Excess Charge Factor

Excess Charge Factor 3.5 **Charge Factor** #3091-1 (non-irradiated) 3 #0626-0 (γ: 1.4e3 Gy) #0631-1 (γ: 4.1e3 Gy) #0631-3 (*y* : 4.1e3 Gy) 2.5 #0660-0 (v: 4.1e3 Gv) \$ * Excess #3093-1 (non-irradiated) #0627-0 (n: 4.8e9 /cm²) #0627-2 (n: 4.8e9 /cm²) #0639-1 (n: 7.9e10 /cm²) ** #0639-3 (n: 7.9e10 /cm²) #0661-2 (n: 2.0e12 /cm²) 1.5 8 10 2 0 6 Vover (V)

- Charge of MPPC is enhanced because of correlated noise: crosstalk and afterpulse.
- The excess factor is calculated by comparing the expected and measured mean number of photoelectrons.

(Excess Charge Factor) =
$$\frac{\mu}{\lambda}$$

 μ : mean of measured distribution

 The expected mean number of photo-electrons can be estimated from the number of zero photoelectrons by assuming Poisson distribution:

 $P(0) = e^{-\lambda}$

- Excess charge factors increase as V_{over} get larger as expected.
- Clear difference b/w proto-type and final version was observed.

PDE for VUV Light

- PDE degradation was not observed for all irradiated samples.
- Overall PDE were lower than those of the previous measurements (14-20%)
 ← purity of LXe??
- Only PDE of #0660-0 was lower though other samples with the same dose level were not the case.
 - PDE of #0660-0 for visible light was similar to others.

← there might be a certain damage in the surface except for radiation damage.

%Errors include statistic errors and a systematic error of W value (10%)

PDE Measurement for VUV Light Irradiated Samples

VUV Light Irradiation

- A xenon lamp was used for irradiation.
- Stability of light was monitored by measuring current of SiPD, which is tolerant to UV light (S12698-02, Hamamatsu).
- VUV-MPPC and SiPM which is not sensitive to VUV light (S13350-3050PE) were irradiated.
- Charges of irradiated and non-irradiated samples were measured using the xenon lamp.
- Only PDE of VUV-MPPC is supposed to be deteriorated.

Xenon Flash Lamp: L4633-01(Hamamatsu)

Setups

Irradiation/PDE measurement for VUV light

Light from the xenon lamp enters after passing through filters.

- bandpass filter : to select VUV light $\lambda_1 = 193.0 \text{ nm}, \text{T}_1 = 26\%, \text{FWHM}_1 = 20.0 \text{ nm}$ $\lambda_2 = 181.0 \text{ nm}, \text{T}_2 = 28.2\%, \text{FWHM}_2 = 38.5 \text{ nm}$
- ND filter : to reduce light

Setups

w/o filters

w/ filters

irradiated

non-irradiated

- All photo sensors were mounted on a support structure.
- ND filters or plastic plates were placed in front of them during irradiation and measurement.
 - Non-irradiated samples were masked during irradiation.
 - Charges were measured ND filters w/ lower transmission to suppress radiation effects.

Radiation Effects

- Total dose was ~2.7e13 photons.
 ← ~2.5e13 photons @ beam time 2018
- Radiation effects were estimated by comparing charge measured by irradiated and non-irradiated samples at the same positions.
- Charge fraction, (irradiated)/(non-irradiated) was
 - VUV-MPPC: 1.09 ± 0.13
 - SiPM : 0.99 ± 0.14
- Expected PDE deterioration was ~10%.
 → Uncertainties of the measurements are too large to conclude the effects.
- The large uncertainties result from position dependence of light of the xenon lamp.
 ← The xenon lamp seemed to be deteriorated.
- Improvement of setups is planned: using a new xenon lamp, using scintillation light from Xenon

Summary

- PDE of γ /neutron irradiated samples were measured using scintillation light from α source.
 - Dose levels were much higher than expectation of MEG II experiment.
- PDE measurements for VUV light samples were performed using a xenon lamp.
 - Total dose was 2.7e13 photons, which is equivalent to the dose level of beam time 2018.
 - PDE deterioration could not be concluded from the results due to a large position dependence of light distribution.
 Setups will be improved for precise measurements. ex. using a new xenon lamp, using scintillation light from Xenon

- Effects of annealing will be checked using VUV-MPPC in LXe.
- Series data will be taken with fixed environments this year.

Backup Slides

- Normal SiPM is insensitive to VUV light because its protection layer and thick p+ layer absorb VUV light before reaching p- layer.
- VUV-MPPC has quartz window to protect its surface instead of the protection layer and thinner p+ layer.
 JPS Autumn(17aT12-5)

α Source

SSB Detector

Energy Distribution

- Energy from α source was measured with a Silicon Surface Barrier (SSB) detector. \leftarrow Energy can be lost in a protection layer at the surface of the source.
- SSB detector was calibrated by measuring another calibration source⁽²⁴¹Am).
- The energy peak was measured to be 4.78 MeV.

IV Measurement (γ)

Dose (Gy)	Serial Number
1.4×10^{3}	617
1.4×10^{3}	626
4.1×10^{3}	631
4.1×10^{3}	660

- All MPPCs work fine.
- From the results of IV measurements, correspondence of serial number and dose was reconstructed.

IV Measurement (Neutron)

IV curve

Dose (n/cm ²)	Serial Number
4.8×10^{9}	627
4.4×10^{10}	629
7.9×10^{10}	639
2.6×10^{11}	645
2.0×10^{12}	661

- All MPPCs work fine.
- From the results of IV measurements, correspondence of serial number and dose was reconstructed.

Response to Visible Light

Measured Charge of LED

Example of Waveform

- Responses to visible light at low temperature were also checked by comparing charges of strong LED light.
- There is no apparent difference.

VUV Light (Xenon Flash Lamp)

型名	アーク サイズ (mm)	外形 寸法図	出射光	窓材	放射波長 (nm)	推奨主放電 電圧 (V dc)	トリガ 電圧 p-p (kV)	最大 平均入力 [連続] (W)	最大 平均入力 エネルギー [1フラッシュ] (J)	発光 繰り返し 周波数 Max. (Hz)	⑧ 光出力 安定性 Max. (%)	@® 動作 寿命 Min. (フラッシュ)	冷却方法	適合 トリガ ソケット	他社 相当品
_4633		•	隹业	硼硅酸ガラス	240~2000										
_4633-01*	1 5	V	朱儿	UVガラス	$185 \sim 2000$	700 - 1000	5 . 7	15	0.15	100	F	E v 108	白好办公	E 4070 01	
L4634	1.5	6	亚行来	硼硅酸ガラス	240 ~ 2000	700~1000	5~7	15	0.15	100	5	5 X 10°	日巛笁/帀	E4370-01	_
_4634-01*	4-01*	9	T1JJL	UVガラス	185 ~ 2000							(1			
										JP57	Autumn	(17a)	12-5)		

波長 (nm)

Spec of ND Filters

JPS Autumn(17aT12-5)

Transmission (%) THOR 0.0 200 1800 2200 1000 1400 2600 600 Wavelength (nm) UVFS Reflective ND Filter, OD = 4.0 0.16 THORE **Lransmission** (%) 0.14 0.10 0.00 0.00 0.04 0.04 $OD = \log_{10}(\frac{1}{T})$ MM0.02 0.00 200 600 1000 1400 1800 2200 Wavelength (nm)

UVFS Reflective ND Filter, OD = 3.0

 $OD = \log_{10}(\frac{1}{T})$

Optical Density

Optical Density

26

- 3.5

.3

0.8

Spec of Bandpass Filters

Waveform of Xenon Lamp

Example of Waveform

	VUV-MPPC	SiPM
Charge (a.u.)	8.8	5.0
Transmission	0.41%	24%
Size	$6 \times 6 \text{ mm}^2$	$3 \times 3 \text{ mm}^2$

☆Two bandpass filter was mounted.

- Irradiation level was estimated by charge.
- About 1.6e6 photons per pulse enter in a chip.
- Irradiation time should be ~42 h to reach an irradiation level of beam time 2018, ~ 2800 h for MEG II (3 years)
- Effects from visible light was estimated using the SiPM, which is insensitive to VUV light.
 - \rightarrow VUV : visible = 96% : 4% (if PDE is constant)

Position Dependence: Xenon Lamp

- Fraction of VUV light was checked before starting irradiation.
- There found to be a large position dependence.
- It was 0.65-0.98 depending on position.
 ← Not a problem as long as it is stable.

Stability of Xenon Lamp

▶ 紫外線照射による分光感度の変化

- A decrease of SiPD current was observed during irradiation (~50h).
- Radiation damage to SiPD is negligible at this dose level; 4.5e13 photons
- Output light from the xenon lamp greatly decreased.

Charge History

- Total dose of irradiated VUV-MPPC was ~2.7e13 photons.
- A decrease of charge were also observed for irradiated and even non-irradiated VUV-MPPC.
- However, charge of non-irradiated SiPM also decreased while that of irradiated SiPM was stable.

Position dependence of the xenon lamp deterioration is suspicious.

Charge Before and After Irradiation

charge mean (VUV-MPPC)

charge mean (SiPM)

- Light distribution changed during irradiation.
 - VUV light at the position of VUV-MPPCs decreased.
 - Visible light at the position of non-irradiated SiPM had a large drop.
- The charge decrease was greatly affected by the decrease of light.

Sensor at the positions VUV-MPPC (irradiated) VUV-MPPC (non-irradiated) SiPM (irradiated) SiPM (non-irradiated) SiPD (irradiated)₂ SiPD (non-irradiated)

IV Curve (SiPD)

₩with LED

IV (non-irradiated)

• No apparent difference

IV Curve (VUV–MPPC)

IV (irradiated)

IV (non-irradiated)

• No apparent difference

JPS Autumn(17aT12-5)

V_{bias} (V)

54

52

IV Curve (SiPM)

IV (irradiated)

IV (non-irradiated)

• No apparent difference?

Radiation Effects

- The charges were measured at 18 positions.
- The fractions were calculated using charges at three points in the same hole.

VUV-MPPC

