MEGII 実験の背景事象の抑制に向けた 超低物質量RPCの開発と性能評価

<u>大矢 淳史</u>(東大理) 家城 佳^A, 大谷 航^A, 越智 敦彦^B,恩田理奈 (東大素粒子センター^A, 神戸大理^B)

Contents

Introduction

- ✓ MEG II experiment
- ✓ Background identification detectors for MEG II background
- ✓ RPC with DLC sputtering technique
- ✓ Required studies for MEG II
- R&D for RPC
- Summary and prospects

MEG II signal and background

MEG II will search for μ→eγ rare decay
 ✓ Identified by energy, timing and direction of e and γ

 Dominant source of background is accidental coincidence of BG-e and BG-γ mimicking the signal
 ✓ One of the dominant source of BG-γ is radiative muon decay

Background identification detector

- New detectors to identify BG- γ from radiative muon decay will be installed for further sensitivity improvement
 - ✓ Detect low energy positron (1-5MeV) accompanying BG γ (~53MeV)
- Planned to be installed to 2 sites
 - \checkmark Upstream and downstream of the target
 - ✓ Upstream one is under development
 → Today's talk

Upstream BG identification detector

• Difficulty of upstream detector is the μ beam(100MHz) passing through the detector

Requirements for upstream detector

- 1. Detection of 1-5MeV positron
- 2. Timing resolution : ~1ns
- 3. Rate capability and radiation hardness (100MHz of ~21MeV/c muon, 60week run)
- 4. material budget: < 0.1% of X_0
- 5. detector size of 20 cm diameter

 Candidate: RPC using electrodes based on Diamond Like Carbon (DLC)

RPC based on DLC

sp²

• RPC: gaseous detector with resistive electrodes parallelly placed

- ✓ R134a based gas with iso-butane & SF6 quencher
- ✓ Gas gap is typically several hundred μ m
- We use electrodes fabricated by sputtering DLC on 50 μ m Kapton films
 - ✓ DLC: high-resistive material made of carbon (mixed structure of sp² bond and sp³ bond)
 - ✓ Advantage of DLC: low material & adjustable resistivity
 - Technology developed by Kobe University

resistive plate made of DLC film

Required studies

- Design parameters to be optimized
 - ✓ Gap thickness
 - ightarrow determines timing resolution and detection efficiency
 - ✓ Resistivity of electrode surface
 → determines rate capability of the detector
 - ✓ Readout structure
 - \rightarrow affects pileup probability, timing resolution

Contents

• Introduction

- R&D for RPC based on DLC electrodes
 - ✓ Structure
 - ✓ Performance measurement and result
 - ✓ Readout test
- Summary and prospects

Prototype design

• Performance study is conducted using 4cm×5cm size plate

- ✓ DLC films are put face to face with a gap of $200 \,\mu$ m
- ✓ Single layer

5cm

Setup for performance measurement

Detection efficiency and timing resolution are measured in this setup

Performance: efficiency

Efficiency : 23 %
 ✓ 9mV pulse height threshold is set considering the noise level

Performance: timing resolution

• Timing resolution: 360 ps

Required improvements

- The readout should be made of Aluminium because copper has large material itself (Commercial aluminized Kapton has thin Al layer with non-negligible resistivity, which may cause problem)
- Multilayer RPC is favored to achieve Kapton (50 µm) higher efficiency, but the number of layers is 4 at maximum (limited by material budget)
 ✓ 40 % single layer efficiency is desired (Total 90% efficiency in reach)
- To achieve high rate capability, the readout must be segmented
 ✓ Strip shape readout is considered

readout

Readout test: signal waveform

• Strip shaped AI readout is tested

1×10cm Aluminium (100nm thickness)

• No problem in the signal waveform

Readout test: timing resolution

- Timing resolution: 290 ps
 - \checkmark Asymmetry of the distribution is not understood

Contents

- Introduction
- R&D for RPC based on DLC electrodes
- Summary and prospects

Summary

- 23% efficiency is achieved with single layer 200 μ m gap RPC
 → It has not reached the goal of 40% for single layer setup
- Timing resolution is 300-400ps for 200 μ m
 - Better than the requirement (dependence on readout scheme is also found)
 - \checkmark It may be worsened when wider gap is used
- It has been demonstrated that Aluminium readout works $\rightarrow 0.1\% X_0$ requirement can be achieved (not completed)

Prospects

• Performance with larger gas gap (400-500um) to be measured

 better efficiency bight 	
• Wors	er operating voltage se timing resolution

currently 360ps \rightarrow acceptable to some extent

- Further studies on readout configuration is required
 - ✓ To pickup the narrow signal shape and suppress reflection of signal → important to suppress pileup b/w positron and beam μ
 - ✓ To understand the dependence of timing measurement on the readout
- Rate capability measurement

BACK UP

amplifier

- The circuit diagram of the amplifier used to read signal from the RPC
 - \rightarrow Developed to read signal from SiPMs with high amplification gain and fast resposee

Pulse height and timing relation

Signal shape

2×4cm copper

Timing resolution

 1cm × 10cm showed different timing distribution (This might be unrelated to readout)

