

MEGII 実験における陽電子タイミング カウンターの解析手法の改善

Study on improving the analysis of the pixelated Timing Counter in the MEG II experiment

2019/09/17 日本物理学会 2019年秋季大会 野内 康介 (東京大学)、他MEG IIコラボレーション

Core-to-Core Program

野内 康介

日本物理学会 2019年秋季大会

Outline

➢Introduction of MEG Ⅱ

- MEG II experiment
- pTC design
- pTC performance

Introduction of this study

- Aim & motivation
- Overview

≻Lab test

- Measurement setup
- Pulse height behavior
- Time center behavior

➤Effect on MEG II

- MC study
- Correction using data

Summary & prospect

MEGII実験における陽電子の時間再構成法の改善

MEG II experiment

Liquid Xenon (LXe) calorimeter

Detects signal photons ٠ c.f. 17aT12 小林、恩田 19pT14 豊田、小川、家城

- Radiative decay counter (RDC)
 - Detects background ٠ positrons c.f. 18pT12 大矢

positron Search for $\mu^+ \rightarrow e^+ \gamma$ reaction

Positron spectrometer

- Superconducting solenoid magnet (CØBRA)
 - Bends signal positrons with constant radius

Cylindrical drift chamber (CDCH)

- Single volume wire chamber with He based gas
- Reconstructs positron track

Pixelated timing counter (pTC)

- Plastic scintillator + SiPM • readout
- Reconstructs positron time ٠

photon

Introduction

MEGII実験における陽電子の時間再構成法の改善

Introduction

pTC performance

- Pixelated design allows $N_{hit} \sim 8$ for signal event
- High time resolution can be achieved for multiple-hit events

Outline

➢Introduction of MEG II

- MEG II experiment
- pTC design
- pTC performance

Introduction of this study

- Aim & motivation
- Overview

≻Lab test

- Measurement setup
- Pulse height behavior
- Time center behavior

➤Effect on MEG II

- MC study
- Correction using data

Summary & prospect

Aim & motivation

≻Aim

- Understand time response of detector & improve analysis algorithm
- 1. Investigate vertical position dependence of reconstructed hit time
- 2. Investigate how hit time is affected by (non-uniform) radiation damage to SiPMs
- 3. Attempt some time correction in offline analysis to improve pTC performance

Aim & motivation

≻Motivation (1)

• Vertical position dependence is seen for "edge hits" in 2017 data

≻Motivation (2)

• 宇佐見's previous study suggest that radiation damage can affect time center behavior

宇佐見正志「SiPM直列接続読み出しにおけるシンチレーション時間検出器の放射線損傷による影響の評価」日本物理学会第74回年次大会

Overview

≻Lab test

- Position scan to check intrinsic vertical position dependence of hit time
- Position scan using SiPMs with different radiation damage patterns

➢ Effect on MEG II pTC

- Reproduction of data with MC simulation
- Study effect of vertical time offset on pTC performance
- Time correction using MC simulation
- Time correction using pTC data

野内 康介

9

Outline

► Introduction of MEG II

- MEG II experiment
- pTC design
- pTC performance

Introduction of this study

- Aim & motivation
- Overview

≻Lab test

- Measurement setup
- Pulse height behavior
- Time center behavior

➤Effect on MEG II

- MC study
- Correction using data

Summary & prospect

Measurement setup (1/2)

Measurement setup (2/2)

►IV curves of used SiPMs

- Damage level of each SiPM is apparent from IV curves
- Damage level of pattern C is comparable to that expected in MEG II ($\sim 5 \times 10^9 n_{1MeV}/cm^2$)

Pulse height behavior (1/2)

➢ Result

- Opposite behavior for normal & reverse order→ clear effect of radiation damage
- Pulse height is bigger when hit point is closer to less-damaged SiPM

日本物理学会 2019年秋季大会

野内 康介

Pulse height behavior (2/2)

Interpretation

- Current flowing through each SiPM is common in series-connection
- Difference in I-V characteristics causes overvoltage difference between non-damaged & damaged SiPM
- Non-damaged SiPMs yield higher gain than damaged SiPMs

I-V curve of each SiPM

Time center behavior (1/2)

➢ Result

- Intrinsic time offset from counter ~100 [ps]
- Similar behavior is seen in all patterns \rightarrow clear effect of radiation damage
- Deviations from $\sim 100 \ [ps]$ is additional effect from radiation damage

日本物理学会 2019年秋季大会

Time center behavior (2/2)

Interpretation

- Time response of SiPM (charge collection speed) changes with overvoltage from bias scan result
- Assumptions (in constant fraction method) to interpret this result:
 - Main pulse is determined dominantly by SiPMs closest to hit point
 - Rising part of pulse is determined dominantly by SiPMs closest to readout
 - When SiPMs closest to readout have low gain & slow time response (i.e. radiation damage), effect of following SiPMs also become dominant

Outline

► Introduction of MEG II

- MEG II experiment
- pTC design
- pTC performance

Introduction of this study

- Aim & motivation
- Overview

≻Lab test

- Measurement setup
- Pulse height behavior
- Time center behavior

➤Effect on MEG II

- MC study
- Application on data

Summary & prospect

MEGII実験における陽電子の時間再構成法の改善

MC study (1/3)

➢ Reproducing data

- Vertical position dependence can be reproduced by setting time offset between series-connected SiPMs
- Setting 80 [ps] time offset between each SiPM for 4cm counter best reproduces data

日本物理学会 2019年秋季大会

MC study (2/3)

Effect of vertical time offset

• Condition: set various (0 [*ps*] - 100 [*ps*]) time offsets between series-connected SiPMs

• Result:

Input time offset	pTC resolution
0 [<i>ps</i>]	36.5 [<i>ps</i>]
20 [<i>ps</i>]	36.6 [<i>ps</i>]
40 [<i>ps</i>]	37.5 [<i>ps</i>]
60 [<i>ps</i>]	39.1 [<i>ps</i>]
80 [<i>ps</i>]	41.4 [<i>ps</i>]
100 [<i>ps</i>]	44.0 [<i>ps</i>]

• Vertical time offset can cause non-negligible pTC performance degradation

MC study (3/3)

➤Correction

- Vertical position dependence can be corrected from observed position dependence
- Offline time correction can suppress deterioration of pTC performance due to vertical time offset
- Correction becomes more effective when radiation damage to SiPMs accumulate

pTC performance evaluation

80×10⁻¹²

70

60 Event time

50

40

30

20

10

0

resolution [s]

- Difficulty of pTC performance evaluation: no reference timing
- \rightarrow Use odd-hits as timing reference of even-hits
- Effect of vertical time offset cancels out in even-odd analysis

even-odd analysis

$$t_{even-odd}(N_{hit}) = \frac{1}{N_{hit}} \sum_{i=1}^{N_{pair}} (t_{hit(2i)} - t_{hit(2i-1)} - ToF_{2i-1 \to 2i})$$

野内 康介

Application on data

Correction

- Not as effective as MC
 - Even-odd analysis is used
 - \rightarrow Effect of vertical time offset is canceled out
 - pTC tracking is used
 - \rightarrow Worse position resolution than CDCH tracking
- Correction should improve when we have full CDCH readout

pTC resolution using evenodd analysis on 2017 data

Outline

➢Introduction of MEG Ⅱ

- MEG II experiment
- pTC design
- pTC performance

Introduction of this study

- Aim & motivation
- Overview

≻Lab test

- Measurement setup
- Pulse height behavior
- Time center behavior

➤Effect on MEG II

- MC study
- Correction using data

Summary & prospect

Summary & prospect

➤Summary

- Position dependence of reconstructed hit time for MEG II pTC was found
- Radiation damage to SiPMs can cause additional effect on position-dependent time offset
- MC simulation study suggests this offset could cause non-negligible pTC performance deterioration
- Offline correction seems effective to some extent

Prospect for MEG II pTC

- Correction to compensate time offset effect will be performed in MEG II pTC
- Divide pTC in several sectors according to radiation damage level & monitor time offset
- Update correction values periodically

Backup slides

cLFV (charged Lepton Flavor Violation)

Quark mixing <</p>

- Included in SM
 Evaluated by CKN4 the
- Explained by CKM theory

Neutrino oscillation

- Discovered in Super-Kamiokande
- Forbidden in SM
- Firm proof of bSM physics
- → Suggests possibility of flavor violation in charged lepton sector

Charged lepton flavor*i* violation (cLFV)

- Forbidden in SM
- Included in many new physics models
- If discovered, certain proof of new physics
- Has been searched in many experiments

$\mu \rightarrow e\gamma$ reaction

Motivation

- Considering neutrino oscillation, possible but very rare
- Included in many new physics models at observable rate
- Can search for new physics w/o directly creating new heavy particles

SM + neutrino oscillation

 $Br(\mu \rightarrow e\gamma) \sim 10^{-54}$ (little background)

Status of cLFV search

- Current upper limit is obtained by MEG
 - $Br(\mu \to e\gamma) < 4.2 \times 10^{-13}$ (90% C.L.)
- MEG II aims for one order higher sensitivity

SUSY-Seesaw Lorenzo Calibbi et al. "Flavour violation in supersymmetric SO(10) unication with a type II seesaw mechanism." JHEP, 0912:057, 2009. SO(10) SUSY-GUT: S. Antusch et al. "Impact of 023 on Lepton Flavour Violating processes within SUSY Seesaw" Journal of High Energy Physics 2006 (11), 090

野内 康介

日本物理学会 2019年秋季大会

Signal & background events

MEGII実験における陽電子の時間再構成法の改善

Detectors

Positron spectrometer

COBRA (COnstant Bendint RAdius)

- Bends positrons at a constant radius independent of emission angles
- \rightarrow Signal positrons enter pTC region
- Gradient field to sweep positrons away from detector region
- \rightarrow Reduce pile-up

>CDCH (Cylindrical Drift CHamber)

• Reconstructs positron track

 \rightarrow pTC (pixelated Timing Counter)

Reconstructs positron time

Positron spectrometer

Positron event display

COBRA

pTC tracking

≻ldea

- Horizontal position can be reconstructed from the time difference of two channels
- Radial coordinate can be reconstructed from hit pattern information

Backward counters

Counter under test

Forward counters

Predict v_{hit} of this counter

Intra-pixel position correction

Positron tracking

- Combine discontinuous hit information into single positron track
- Kalman Filter technique is used to extrapolate track and include following hits
- Segments are fitted with **GENFIT**
- Two types of tracking (pTC tracking & CDCH tracking) exists
 - CDCH tracking is used for MC study
 - pTC tracking is used for data analysis (due to limited CDCH readout electronics)

Kalman Filter

Efficient recursive algorithm to estimate the state vector & its covariance matrix based on previous steps **GENFIT**

Generic toolkit for track reconstruction for experiments in particle & nuclear physics

CF scan

➢Pattern A

- Time center behavior for normal order changes drastically with CF value
- \rightarrow Longer path components become dominant at higher CF values
- Time center behavior for reverse order is almost same at all CF values
- \rightarrow Short path component is dominant

CF scan

≻Pattern B

- Time center difference for both normal & reverse order changes with CF value
- \rightarrow Dominant contribution changes from short-path to long-path component with higher CF value (2 nondamaged SiPMs are enough to form pulse rise for CF 20% case but not for CF > 50%)

34

CF scan

➢Pattern C

- Time center difference for both normal & reverse order changes moderately with CF value
- \rightarrow Dominant contribution changes from short-path to long-path component with higher CF value
- CF dependence is relatively small because overvoltage shift is small for pattern C (clear from pulse height behavior)

v resolution

➢pTC tracking

➤CDCH tracking

w resolution

➢pTC tracking

>CDCH tracking

