MEG II実験液体キセノンガンマ線検出器における 位置分解能の評価 Evaluation of the position resolution of the MEG II liquid Xe detector

日本物理学会 2019年年次大会 九州大学

EGI

小林 暁(東大理), 他MEG IIコラボレーション

Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo

Core-to-Core Program

THE UNIVERSITY OF TOKYO

- Introduction
 - MEG II experiment
 - XEC upgrade
- Position Resolution measurement
 - Principle
 - First measurement in 2017
 - Improved measurement in 2018
- Summary

$\mu \rightarrow e\gamma$ search

3

発見済み

未発見

発見済み

B-factory

2

С

 $V_e \leftrightarrow V_{\mu} \leftrightarrow V_{\tau}$

- Same energy(52.8MeV)
- - $\mu \rightarrow e\gamma$ decay is a lepton flavor violating decay.
 - **almost forbidden** in SM+v. oscillation(Br($\mu \rightarrow e\gamma$)~10⁻⁵⁴)
 - predicted in some theories(Br($\mu \rightarrow e\gamma$):10⁻¹¹~10⁻¹⁴)
 - Current upper limit of $Br(\mu \rightarrow e\gamma)$ is given by the MEG experiment.
 - 4.2×10⁻¹³ (90% C.L.)

MEG II Experiment

- MEG II experiment will search for the $\mu \rightarrow e\gamma$ decay with unprecedented sensitivity.
 - Br($\mu \rightarrow e\gamma$)~6×10⁻¹⁴ in 3 years
- Liquid Xenon gamma-ray detector measures position, energy and timing of the incident gamma-ray.

Liquid Xenon Detector Upgrade

- We have replaced 216 2-inch PMTs on the γ-entrance face with 4092 12×12 mm² VUV-MPPCs.
 - High granularity & uniform readout
 - Position resolution: 5 mm \rightarrow 2.5 mm
 - Energy resolution: $2\% \rightarrow 1\%$
 - Less material of the entrance face
 - Better detection efficiency

Principle of Evaluation

6

First Measurement in 2017 - Set up

Installed collimator (v direction)

- We tried to estimate the resolution using BG gamma-ray from muon decay.
- We reused MEG lead collimators.
 - Along with their support structure.

First Measurement in 2017 - Result

- Vague position distribution.
 - The slit of the collimator was too wide.
 - The spread of the vertex of gamma-ray was too wide(a few cm).
- Furthermore, following issues make it difficult to compare data with MC.
 - Neither detector nor collimator were aligned.
 - Support structure for the collimator was not robust enough.

Redesign of collimator

- A new collimator with narrow slits was produced.
 - Slit width: 10mm→5mm: narrow peak
 - Thickness: 18mm→25mm: better S/N
- Rigid support structure was produced.
 - Supports 15kg lead collimator with little deformation.

Alignment of collimator & detector

Alignment of MPPCs

- · Collimator is precisely surveyed after the installation by laser tracker.
 - Precision: ~a few 10um.
- The position of MPPCs was measured and transformed considering the position of the detector.
 - Precision: <500um.
- The measured geometry is taken into account in MC simulation.

Measurement in 2018

- Gamma-ray source: 17.6 MeV from ${}_{3}^{7}$ Li(p, $\gamma)_{4}^{8}$ Be
 - Proton beam from Cockcroft-Walton accelerator.
 - Target: $Li_2B_4O_7$
 - Beam vertex spread <1mm (2017: a few cm)
- Data taking : ~3 days in pre-engineering run.

Position Distribution

v_{rec}(7.0 cm<w_{rec}<10.0 cm)

Sharp position distribution was successfully observed.

 v_{rec} (10.0 cm< w_{rec} <15.0 cm)

- Narrow peak width & Higher S/N
- •40 Peaks are fitted with constant + Gaussian.
 - **Position & width** are compared with MC values.

-10

cm]

Peak Position

- Depth-dependent deviation between data and MC
 - Mis-alignment of gamma-ray vertex position @ target?
 - The collimator and the detector are aligned to an accuracy of <500um.
 - Bias of position reconstruction
- Further investigation is planned.

Peak Width

- The position resolution should be improved especially at shallow region(depth<4cm).
- Peak width in data has similar depth dependence to that in MC as expected.
 - However, we have several sources of systematic uncertainty.

Systematics to be considered

Hit distribution of collimated gamma-ray

Reconstructed u at shallow region(w<5mm)

- There are several sources of systematic uncertainty.
 - Hit distribution may not be Gaussian-shaped.
 - Bias of reconstructed position.
 - Uncertainty of beam vertex position & spread.

- MEG II experiment will search for $\mu \rightarrow e\gamma$ down to $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$.
- Expected gamma-ray position resolution is 2.5 mm.
- We improved the set up of the position resolution measurement.
- At the first measurement in 2017, several issues were found.
 - Vague position distribution.
 - Alignment of collimator and detector.
- In 2018, these issues were solved.
 - High contrast position distribution was successfully observed.
- The evaluation of position resolution is in progress.
 - The estimation of systematic errors.