MEG実験全データを用いた

荷電レプトンフレーバーを破る軽い新粒子の探索

Searching for a lepton flavour violating muon decay mediated by a new light particle with the MEG I full datasets

東大理, 東大素セ^A, KEK^B

中尾光孝,澤田龍^A,名取寛顕^B,他MEGコラボレーション

JPS Annual Meeting 2019 (17aK305-3)

Introduction (1/2)

- There is no clear evidence of new physics to date (except for some anomalies).
- Therefore it is important to search any possibility of BSM using existing experimental setups.
 - Displaced vertex/long-lived particles search in ATLAS/CMS, FCC.
 - LHC + X facilities (Codex-b, MATHUSLA, MilliQan, SHiP, FASER)
 - Long-lived particles search in KOTO.
 - Dark sector search in Belle2 (B2TiP).
 -
 - MEG can do the similar thing!

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao 🛧 Page: 2/16

The MEG experiment

Liquid xenon gamma-ray detector

- The MEG experiment searched for charged lepton flavour violating muon decay (μ⁺→e⁺γ).
- Physics data taking: 2009–2013
 - ▶ 7.5x10¹⁴ stopped muons
- No excess was found and the most stringent upper limit, 4.2 x10⁻¹³ (90% C.L.) was set on Br(μ⁺→e⁺γ) in 2016.

At Paul Scherrer Institut in Switzerland

The final results: A. M. Baldini et al. (MEG Collaboration), Eur. Phys. J. C 76 (2016) 434

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao 🛧 Page: 3/16

Introduction (2/2)

We have started studying a search for μ⁺→e⁺X, X→γγ using the MEG full datasets.

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao 🛧 Page: 4/16

Physics motivation

- Main motivation: LFV is one of the key tools to search for BSM.
- However, we have not yet observed LFV mediated by heavy particles.
- LFV mediated by new light particle X ~ O(10–100) MeV might been left undiscovered as a loophole.
- A possible search in MEG: $\mu \rightarrow eX$, $X \rightarrow \gamma \gamma$ (hereafter we call it "MEx2G")
 - X is generated via LFV coupling and the on-shell X decays back into SM particles.
 - In this search, we assume decay width is narrow and X is long-lived.
- A possible mechanism of the light mass: Nambu-Goldstone boson generated via spontaneously symmetry breaking of approximate global symmetry (i.e. relatively light mass of π)
- Possible candidates of X: axion-like particle, majoron, familon, flaxion, and strongly interacting DM (SIDM)

Previous studies

• Crystalbox (1988): $\mu \rightarrow e\gamma\gamma$ decay search

JPS Annual Meeting 2019 (17aK305-3)

- This upper limits are converted into MEx2G taking into account the difference of the detector efficiency (solid line in left plot).
- H. Natori (2012): $\mu \rightarrow eX$, $X \rightarrow \gamma \gamma$ decay search using the MEG 2009/2010 datasets
 - the first in the world, available in a Ph.D thesis (not published yet).
- SN1987A/beam dumps: ">1 cm or <20 MeV" is excluded (right plot).
 - ▶ Target parameter space should be "<1 cm and >20 MeV".

Mitsutaka Nakao ★ Page: 6/16

Today's topic

- There is no clear evidence of new physics to date (but for some anomalies).
- Therefore it is important to search any possibility of BSM using existing experimental setups.
 - Displaced vertex/long-lived particles search in ATLAS/CMS, FCC.
 - LHC + X facilities (Codex-b, MATHUSLA, MilliQan, SHiP, FASER)
 - Long-lived particles search in KOTO.
 - Dark sector search in Belle2 (B2TiP).
 -
 - MEG can do the similar thing!

Today's topic

We have started studying a search for μ⁺→e⁺X, X→γγ using the MEG full datasets.

focusing on

- expected Br sensitivity
- possible updates
- schedule

*****The physics results will not be presented today.

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 7/16

Signal reconstruction & BG

- Signal e+, X:
 - back-to-back
 - the same momentum
 - coincidence in time

- Possible BG:
 - e⁺ is accidental
 - one of γ is accidental
 - e+, γ , and γ is accidental
- BG is estimated with time sideband.

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 8/16

Updates from the previous study

- ~5 times larger statistics
- Refined reconstruction methods
 - e⁺ events
 - noise subtraction, refined tracking
 - 2γ event selection
 - \checkmark A better algorithm to select 2 γ events.
 - 2γ event reconstruction
 - ✓ rejection of biases, additional corrections.
 - X vertex reconstruction

• Corrections/modifications on the estimation of efficiencies

- Additional corrections (trigger, e⁺ efficiency).
- Taking additional correlations b/w variables into account.
- More data-driven estimation.

Red: already implemented Black: work in progress

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 9/16

Expected Br sensitivity

- The purpose of this study is to estimate expected Br sensitivity with the MEG full datasets.
- Updates included in this calculation:
 - ▶ ~5 times larger statistics.
 - Analysis updates (mainly on the positron side).
 - A change of trigger conditions after 2010.
- <N_{BG}> is calculated based on the analysis in 2012 (using 2009/2010 data), assuming it is proportional to the statistics (=k)
- The expected Br sensitivity is calculated using the Feldman-Cousins (FC) approach*.

*G.J.Feldman,R.D.Cousins, Phys. Rev. D 57(7), 3873–3889 (1998)

- Br sensitivity: $\mathcal{B} = 1/k \times N_{\mathrm{sensitivity}}$
 - **k**: normalisation

✓ 1/k: single event sensitivity

• N_{sensitivity}: expected N_{signal} upper limit when no signal is assumed

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 10/16

Normalisation

Normalisation

• To get the relative normalisation, Michel events $(Br(\mu^+ \rightarrow e^+ \nu \nu) \sim 100\%)$ are used.

• By using Michel positrons as a normalisation, the estimation is independent of beam rate (stopped muons), and insensitive to absolute positron detection efficiency.

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 11/16

Normalisation

• S.E.S.: Single Event Sensitivity = 1/k

 $k_{\text{Natori2012}} = k_{2009a} + k_{2009b} + k_{2010a} + k_{2010b}$

 $k_{\text{This study}} = k^{\text{new}}_{2009a} + k^{\text{new}}_{2009b} + k^{\text{new}}_{2010a} + k^{\text{new}}_{2010b} + k_{2011} + k_{2012/2013}$

- Blue: S.E.S. estimated in the previous analysis in 2012.
- **Red**: updated results with more statistics (**x4.7–5.3**).

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 12/16

1. N_{BG} in the previous study is shown in **blue**:

Assumed m_X (MeV) in vertex reconstruction

2.Assume N_{BG} is proportional to the statistics*, then we get expected N_{BG} in the full datasets (see the next):

- expected N_{BG} = previous $N_{BG} * k_{This study} / k_{Natori2012}$
- ▶ 4.7–5.3 times larger statistics than the previous results.

3.Calculate the sensitivity (see the next).

*In the final analysis, it will be estimated using sideband data.

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 13/16

Sensitivity

Sensitivity

- Sensitivity is defined as the average upper limit that would be obtained by an ensemble of experiments with the expected background and no true signal.
- Sensitivity is calculated using estimated N_{BG} and Feldman-Cousins approach.
- Sensitivity at 90% C.L. is shown in right plot together with expected N_{BG} .

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 14/16

Results

Br sensitivity

- ullet We can get Br sensitivity with $\ \ \mathcal{B}=1/k imes N_{
 m sensitivity}$
- Br sensitivity is expected to be improved by a factor of **3.2–5.0**.
- Lower mass: N_{BG} is larger and it should be decreased to get the better sensitivity.
- Higher mass: new analysis can update crystal box results, which cannot be updated in Natori2012.

Worse sensitivity in the higher mass region due to

- Cut efficiency
- Trigger efficiency
- Gamma acceptance

JPS Annual Meeting 2019 (17aK305-3)

Mitsutaka Nakao ★ Page: 15/16

Summary & Prospects

- Recently, it is important to search any possibility of BSM with existing experimental setups.
- We have started thinking the search for μ⁺→e⁺X, X→γγ using the MEG I full datasets.
- Br sensitivity is expected to be improved by a factor of **3.2–5.0** from the previous study in 2012.
- It will be updated with refined analyses.
- Updates on reconstruction tools: on going
- Physics results: this year

Mitsutaka Nakao ★ Page: 16/16

JPS Annual Meeting 2019 (17aK305-3)