

Core-to-Core Program

MEGII実験液体キセノン検出器、 背景ガンマ線エネルギー分布の測定

Measurement of background gamma-ray energy spectrum in MEG II liquid Xe detector

小川真治、他MEG IIコラボレーション @日本物理学会 第74回年次大会 2019.03.15

Table of contents

- 1. Introduction
- 2. Monochromatic γ from calibration source
- 3. BG γ spectrum in MEG II beam

MEG II experiment

Upgrade of MEG experiment

- □ Searches for $\mu \rightarrow e\gamma$.
- Dominant BG : accidental BG

More statistics

- x2.3 muon beam rate
- x2 positron efficiency

Better separation of signal event from BG

- x2 for all detector resolutions
- New detector for background tagging will be introduced

Expected sensitivity: 6×10^{-14}

One order of magnitude better than MEG

Engineering run from 2019

Followed by physics data taking.

Reference : "The design of the MEG II experiment",

Eur. Phys. J. C (2018) 78:38

LXe detector in MEG II

• LXe detector has been upgraded for MEG II to significantly improve the performance.

216 2-inch PMTs

4092 12 × 12 mm² MPPCs

• Detector commissioning on going.

Performance for 52.8MeV signal γ

	MEG (measured)	MEG II (simulated)	
Position	~5 mm	~2.5 mm	ightarrow Next talk
Energy	~2%	0.7 - 1.5%	ightarrow This talk
Timing	62 ps	40 - 70 ps	→ Talk in 2018年
Efficiency	65%	70%	年次大会 (25aK20

Pre-engineering run 2018

- Pilot run of LXe detector was carried out with MEG II muon beam.
- Similar beam time was also performed in 2017.
 - \rightarrow Several improvements in 2018.

Monochromatic γ
 from calibration source.

• Not available in 2017.

- 2. Unbiased TRG thanks to better sensor calibration.
- In 2017, trigger by sum of MPPC waveform
- In 2018, trigger by sum of MPPC + PMT waveform

Detector performance study. Detector response calibration.

Beam background γ spectrum study with calibrated detector.

Sec. 3

Table of contents

1. Introduction

- 2. Monochromatic γ from calibration source
- 3. BG γ spectrum in MEG II beam

CW-Li

- 17.6MeV γ -ray from ${}_{3}^{7}$ Li $(p,\gamma){}_{4}^{8}$ Be. (called as CW-Li)
 - Proton from Cockcroft-Walton accelerator is injected to Lithium target.
- Use WaveDREAM (electronics for MEG II) for waveform readout.
 - Read out 25% of detector.

 Energy is reconstructed based on sum of detected # of photon.

$$- E_{\gamma} = Const. \times \sum_{sensor} \frac{charge}{gain \times EQF \times PDE}$$

Reconstructed Ey (CW Lithium)

Energy resolution @ CW-Li line

- Energy resolution can be estimated from CW-Li line.
- Estimated to be ~3%.
 - Twice worse than MC. Under investigation.

Energy scale stability

- Photo sensor response changes.
 - PMT gain shift by Magnetic field, beam charge-up.
 - PMT gain aging by beam.
- \rightarrow Needs to be monitored.

Monitor by 2 independent methods (LED & CW-Li peak).
 → Gain shift by ~10% observed. Still ~2% inconsistency left.

Table of contents

- 1. Introduction
- 2. Monochromatic γ from calibration source
- 3. BG γ spectrum in MEG II beam

γ-ray DAQ with muon beam

- γ-ray DAQ with muon beam.
 - (i.e. background γ spectrum in $\mu \rightarrow e\gamma$ search)
 - $-\gamma$ -ray from radiative muon decay + converted γ from Michel muon decay.
- DAQ performed at 2 types of beam rate.
 - − MEG II intensity rate (7 × 10⁷ μ /s) → To check pileup effect.
 - − Reduced beam rate (8 × 10⁶ μ /s) \rightarrow To check detector response w/o pileup.
- Pileup identification and unfold is applied in offline analysis.

Ey spectrum (@ reduced muon beam rate)

12

- Energy spectrum is well consistent up to ~51 MeV.
- Inconsistency observed in high energy region.
 - maybe due to BG events not coming from muon beam.

Eγ spectrum (@ MEG II nominal muon beam)¹³

- Energy spectrum has similar shape, but not consistent with MC.
 - Large number of events in high energy region.
 This is due to larger number of pileup γ than expected.
 - Some inconsistency also in low energy region.
- Pileup subtraction in offline analysis works.

Summary

- Pilot run of LXe detector was carried out with MEG II muon beam.
 - 17.6MeV monochromatic γ from excited ${}_{3}^{7}\text{Li}(p,\gamma){}_{4}^{8}\text{Be}$.
 - 40-53 MeV background γ -ray from muon beam.
- Preliminary results are reported. Further investigation is going on.
 - 17.6MeV peak from CW-Li is successfully observed.
 - Measured energy resolution is worse than expected.
 - Energy scale is monitored by sensor gain calibration & CW Li line.
 - Inconsistency of 2% is left.
 - BG spectrum is roughly consistent with MC.
 - Some inconsistency with MC is still left.

BACKUP

LXe detector upgrade

MEG II

LXe detector has been upgraded for MEG II to significantly improve the performance.

We have replaced 216 2-inch PMTs on the y-entrance face with 4092 $12 \times 12 \text{ mm}^2 \text{ MPPCs}$.

- **Better granularity**
 - Better position resolution
- Better uniformity of scintillation readout
 - **Better energy resolution**
- Less material of the y-entrance face
 - Better detection efficiency

outer

16

Expected performance

• Significant improvement of all resolutions and efficiency are expected.

Detector performance for signal γ-ray

	MEG (measured)	MEG II (simulated)
Position	~5 mm	~2.5 mm
Energy	~2%	0.7 - 1.5%
Timing	62 ps	40 - 70 ps
Efficiency	65%	70%

Multiple y identification

- Granularity of γ incident face has been largely improved.
 - 1 PMT replaced with 4 x 4 MPPC. (i.e. factor 16 improvement)
 - Main purpose: Improvement of position/ energy resolution.
- Can we utilize higher granularity for other purpose?
 → Identification of multiple y event.

