

素粒子物理と原子物理の融合が拓く新たなミュー粒子物理のフロンティア いよいよ始まる次世代のミュー粒子稀崩壊探索実験

東京大学素粒子物理国際研究センター大谷航 2019年3月14日日本物理学会年次大会,九州大学

Contents

- Rare Muon Decays
- μ+→e+γ
- µ+→e+e-e+
- Future Plans
- Summary

Lepton Flavour Violating Process

New Physics

Charged lepton flavour violating (cLFV) process

- ・μ→eγ, μ→eee (本講演), μN→eN (次講演), Mu-Mu conversion,…
- Rate is too small to be observed in Standard Model (𝔅(μ→eγ) ~10⁻⁵⁴)
- Large enhancement predicted by new physics ($\mathscr{B}(\mu \rightarrow e\gamma)$ ~10⁻¹¹-10⁻¹⁵)

→Unambiguous evidence of new physics if discovered!

- Complementary to energy frontier experiment
 - Colourless particles not strongly constrained by LHC
 - High energy scale beyond LHC is indirectly accessible

<u>Rare Muon Decay</u> μ→eγ vs. μ→eee

Effective CLFV Lagrangian

大谷航 "いよいよ始まる次世代のミュー粒子稀崩壊探索実験", 日本物理学会年次大会, 2019年3月14日, 九州大学 5

Search History

- Getting sensitive enough to explore new physics!
- Even more sensitive experiments will start soon

μ→eγ: MEG II at 6×10⁻¹⁴ μ→eee: Mu3e at ~10⁻¹⁵ For SUSY ℛ(μAI→eAI)/ℬ(μ→eγ)=2.6×10⁻³ ℬ(μ→3e)/ℬ(μ→eγ)=6×10⁻³

Key Items for Muon Rare Decay Search

Most intense continuous muon beam

Innovative detectors

→ Already exists!

HIPA@PSI

 High Intensity Proton Accelerator (HIPA) at Paul Scherrer Institute (PSI)

590MeV ring cyclotron, 2.3mA → 1.4MW!

• Up to ~10⁸ µ+/sec!

πE5 beam line

- To be shared by MEG II and Mu3e (and others)
- One experiment running at a time

πE5 beam line

Contents

- Rare Muon Decays
- μ+→e+γ
- µ+→e+e-e+
- Future Plans
- Summary

Requirements

- Continuous beam to minimise accidental background
- Precise measurements of energy, timing and angle both for e⁺ and γ
- Operational at high rate environment (stability and pileups...)

Background

- Prompt background: µ→eγvv
- Accidental overlap: µ→evv + Y

MEG Experiment

MEG detectors

- γ: 900ℓ LXe scintillation detector
- e⁺: COBRA spectrometer (low mass drift chambers + fast timing counter in a gradient B-field)

Data-taking

- 2008-2013
- Beam intensity 3×10⁷ µ+/sec
- Total µ⁺ stops: ~7.5×10¹⁴
- Final result published in 2016 Eur. Phys. J. C 76 (2016), 434

𝔅(μ⁺→e⁺γ) < 4.2×10⁻¹³ (90% C.L.)

→ ×30 more stringent than previous experiment!

MEG II Experiment

• Goal: ×10 higher sensitivity: ~6×10⁻¹⁴

- Retain experimental concept
 - LXe detector for γ detection, e⁺ spectrometer with a gradient magnetic field
- Fully exploit maximum beam intensity @PSI up to ~10⁸ μ +/sec
- Detector performance should be significantly improved
 - Resolutions: ×2 improved for all observables
 - Efficiency: ×2-3 improved

LXe Photon Detector

Highly granular scintillation readout

- 216 × PMTs(2-inch) on γ-entrance face are replaced with 4092 × VUV-MPPCs (139mm² each)
- Energy and position resolutions will be improved by a factor of two.
- Construction completed. Under commissioning
 - Sensor calibration (PMT, MPPC)
 - LXe purification to maximise light yield
 - Noise reduction
 - Performance test with calibration $\gamma\text{-source}$ and BG- γ

Monochromatic 17.6MeV-y

BG-γ from radiative muon decay

BG-γ BG-γ with pileup

Cylindrical Drift Chamber

- Single cylindrical gas volume, U-V stereo angle wire configuration
- Construction completed and installed into spectrometer magnet
- Under commissioning
 - Measured cosmic ray track
 - Measured Michel positrons measured at full beam intensity
 - Not able to apply nominal HV for inner layers due to some instability

Positron Timing Counter

Segmented timing counter

- 516 fast scintillator counters (256 counters for each up- and down-stream side)
- Each counter readout by 6 SiPMs connected in series at each side
- Excellent time resolution <40ps by measurement with multiple positron hits

Fully commissioned

$$\sigma_{\text{overall}}^2(N_{\text{hit}}) = \frac{\sigma_{\text{single}}^2}{N_{\text{hit}}} + \frac{\sigma_{\text{inter-pixel}}^2}{N_{\text{hit}}} + \sigma_{\text{MS}}^2(N_{\text{hit}})$$

$$\sigma_{single}$$
~70-80ps, $\sigma_{inter-pixel}$ \lesssim 30ps, σ_{MS} ~5ps

人谷航 いよいよ始まる次世代のミュー粒子稀崩壊探索実験",日本物理学会年次大会,2019年3月14日,九州大学 15

関連講演 14aK209-8(大矢), 17aK104-1(恩田)

Radiative Decay Counter

- New detector in MEG II
- Identify BG-y from RMD by tagging low mom. positron associated with RMD
 - Upstream: completed and fully commissioned

LXe detector

• Downstream: under development

identify RMD events. **Construction finished!** -(DS-RDC) LYSO crystals and

-20

Downstream (DS)

plastic scintillators

Status and Prospects of MEG II

All detectors deployed in PSI πE5 beam line

• Run 2018

- All detectors deployed
- There are still some issues
 - Full electronics will be ready in 2019
 - Higher noise than expected
 - Serious instability of inner layers of CDCH

• Run 2019

- Repair of CDCH
- Mass production of readout electronics
- Full engineering run

From 2020 onward

- Production of physics data
- Surpass MEG sensitivity in a few months
- 4-5 year running to reach target sensitivity

Contents

- Rare Muon Decays
- μ+→e+γ
- µ+→e+e-e+
- Future Plans
- Summary

Materials by courtesy of A. Schönig and A. Papa

Requirements

- Continuous beam to minimise accidental background
- High momentum resolution to suppress irreducible background
- Good vertex and timing resolutions to reduce accidental BG

Mu3e Experiment (Phase I)

- Sensitivity goal: 2×10⁻¹⁵ (SES)
- $\pi E5@PSI$ with 10⁸ μ +/s

Mu3e detector

- Ultra thin Si pixel detector (HV-MAPS): 0.1% X₀/layer
- High precision tracking using recurring tracks
- Fast timing detectors (SciFi & tile)
- He-gas cooling

Si Pixel Detector

Based on HV-MAPS

- Pixel dimension: 80×80µm²
- Ultra-thin: ^t50µm
- Active area: ~20×20mm²
- Power consumption < 350mW/cm²

• MuPix8

• First large area prototype: 160mm²

HV-MAPS

Ivan Peric, Nucl.Instrum.Meth. A582 (2007) 876-885

Can be corrected:

< 14 ns resolution

-300 -200 -100

0

100

200

300

time resolution / ns

400

0 1

0.05

0

大谷航 "いよいよ始まる次世代のミュー粒子稀崩壊探索実験", 日本物理学会年次大会, 2019年3月14日, 九州大学 2

40 60 80 100 120 140 160 180

threshold / mV

0.85

0.8

Helium Gas Cooling for Pixel Detector

Need cooling for 200M pixels for central and two recurl stations

Helium gas cooling concept

~15 cm

- Temperature 20-50°C
- No extra material in active volume

Timing Detectors

Precise time measurement to reduce accidentals

- Scintillating fibres: O(1ns)
- Scintillating tiles: O(100ps)
- Need full efficiency (>99%)

Scintillating tiles

- 3 staggered layers of 250µm scintillating fibres (0.2%X₀)
- Readout by SiPM array
- 366ps for prototype test

SiPM Array: Hamamatsu S13552-HQR

Scintillating fibres O(1 ns); Scintillating tiles O(100 ps)

- Scintillator tile: 6.5×6.5×5mm³
- SiPM: 3×3mm²
- O(60ps) for prototype test

Pixels: O(50 ns)

Status and Prospects of Mu3e (phase I)

Moving from R&D phase to construction phase

- Ready for production in 2019
- Detector construction in 2020

Commissioning start in 2021

To be delivered in summer 2019

Perspectives

Contents

- Rare Muon Decays
- μ+→e+γ
- µ+→e+e-e+
- Future Plans
- Summary

Future Plans

Not the end of the story, even if discovered

From "Discovery" to "Measurement"

- Branching ratio
- Angular distribution
 - →Energy scale and symmetry of new physics

High intensity Muon Beam (HiMB) project at PSI

- Aim: *O*(10¹⁰) μ+/s
- Slanted target with split capture solenoid
- Time schedule: O(2025)

Solenoid beam line for target M

Split capture solenoid

gare of infinitiant detector congulation for early commissioning with contrar smeen only (phase in

An Experiment to Search for the Decay $\mu \rightarrow e$

• Mu3e Phase II

 Ano⁺her pair of recurl stations improve momentum resolution to fully cover inne⁻ tracker acceptance

Beam InnerT**piget**tla

Beam Scintillating fibres

• Tarç et sensitivity: 10-16

• Beyo nd MEG II?

- Star ing discussion
- Nee 1 new detector concept to go beyond MEG II

outer pixel layers

tl in Si detector (e.g. HV-MAPS) Figure 6.8: Detector with one set of recurl stations for physics runs and tile detector commissionin (phase 6B). Minimum detector cofiguration for early commissioning with central silicon only (phase IA

Summary

Muon rare decays are powerful tools to explore new physics

- Most intense DC μ-beam at PSI + Innovative detectors
- Already sensitive enough to test many of new physics models
- Complementarity btw/ various processes

New experiments with further improved sensitivities coming soon!

- μ→eγ: MEG II
- µ→eee: Mu3e (Phase I)

Future plans also planned or under discussion

• "Measurement" of rare decay would give us a hint on energy scale and symmetry of new physics