Core-to-Core Program

The Development of a π Beam Position Detector for the Calibration of the MEG II Liquid Xe Detector MEG II 実験液体キセノン検出器の較正に用いる πビーム位置検出器の開発

Kazuki Toyoda

on behalf of the MEG II Collaboration

ICEPP, University of Tokyo

17 Mar 2019 JPS 2019 annual meeting @Ito

Outline

- ➤ Introduction
 - $\circ~$ LXe Calorimeter of MEG II
 - $\circ \pi^- p$ Charge Exchange Calibration

Simulation Study

- \circ optimization of configuration
- \circ light yield & radiation hardness

Outline

- ➤ Introduction
 - $\circ~$ LXe Calorimeter of MEG II
 - $\circ \pi^- p$ Charge Exchange Calibration

Simulation Study

- \circ optimization of configuration
- light yield & radiation hardness

Introduction

LXe Calorimeter of MEG II

- \blacktriangleright MEG II searches for $\mu \rightarrow e\gamma$
 - \circ 52.8 MeV/*c*
 - back-to-back
 - \circ same timing
- \succ reconstruct γ using
 - o LXe (Liquid Xenon) scintillator
 - 4092 MPPC, 668 PMT Ο
- background events • radiative muon decay o accidental background \rightarrow resolution is important

180°

$\pi^- p$ Charge Exchange Calibration

- \succ π[−]*p* charge exchange reaction: π[−] + *p* → π⁰ + *n*, π⁰ → γ + γ
 - \circ stop π^- beam on hydrogen target at rest
 - $\circ \pi^0$: momentum is 28 MeV/*c*
 - $\circ E_{\gamma}$ depends on angle b/w two γ in Lab. system (54.9 MeV 82.9 MeV)
 - \circ when choose back-to-back event in Lab. system, monochromatic γ can be obtained.

Introduction

Estimation of Conversion Time & Energy

JPS 2019 annual meeting @Ito

Outline

- > Introduction
 - LXe Calorimeter of MEG II
 - $\circ \pi^- p$ Charge Exchange Calibration

Simulation Study

- \circ optimization of configuration
- \circ light yield & radiation hardness

Idea of π^- Beam Position Detector

put Scintillating Fiber in front of target

- how finely should it be segmented?
- large enough signal?
- radiation hardness?

 \rightarrow simulation study

each bundle is

made of some fibers

MPPC

Simulation Setup

- \circ use geant4 (ver. 10.3.1)
- \circ inject (70.5 ± 2.1) MeV/*c* π^- (100,000 events)
- \circ uncertainty of each detector is considered
 - π^- position detector
 - tagging detectors
 - pre-shower counter
 - BGO calorimeter

• XEC

XEC O(mm)

decay point (9 mm in transverse)

pre-shower (7 mm, 40 ps)

BGO calorimeter (10 mm)

 scintillation photon is not simulated
 calculate "accuracy": standard deviation of "estimated conversion time or energy" – "truth"

 $\theta_{\gamma\gamma}$

 LH_{2}

 π^{-}

Segmentation Optimization

LO/13

Light Yield

Radiation Damage on Fiber

 \blacktriangleright Calculation of Dose (Gy = J/kg) ○ beam rate: 1.4 MHz

 $\circ e^-$ contamination: 26 times of π^- (can distinguish by ToF and signal size)

 \circ DAQ days = 10 days/year \times 3-5 years

 \rightarrow 15,000 Gy at center of beam spot

abs. coeff. ∆μ (440 nm) / cm 10 \blacktriangleright effect to property n irrad. (cyclotron) 10⁻² n irrad. (reactor) \circ light yield: 50-65 % at 34,000 Gy of γ ray γirrad. (a) virrad. (b) γ irrad. (c) \circ transmittance: ~ 40 % at 10 cm at 15,000 Gy of γ ray 10 1000 100 dose D / kGy \rightarrow still detect ~ 10 pe after 5 years DAQ Y.M. Protopopov, V.G. Vasil'chenko

Nucl. Instr. and Meth. in Phys. Res. B 95 (1995) 496-500

PS, SCSN38

Z/13

B. Bodmann, U. Holm

 10°

Nucl. Instr. and Meth. in Phys. Res. B 185 (2001) 299-304 17 Mar 2019

13/13

Summary & Prospect

- > $\pi^- p$ charge exchange calibration is important calibration method of LXe Calorimeter
- by placing Sci-Fi in front of target, estimation of timing & energy improves;
 σ_t : 70 ps → 50 ps, σ_E : 320 keV → 300 keV
- \succ signal will be large enough even after 50 days radiation
- still need investigation on background from reaction on scintillating fiber
 possibility of make target active