MEG II実験液体キセノンガンマ線検出器の位置分解能 およびその位置依存性の評価

Evaluation of position resolution and its position dependence of the MEG II liquid xenon gamma-ray detector

> 小林 暁(東大理), 他MEG IIコラボレーション

Satoru Kobayashi on behalf of the MEG II collaboration The University of Tokyo 日本物理学会 2020年秋季大会 (オンライン開催) 15aSE-9

- Introduction
 - MEG II experiment
 - Liquid Xenon Gamma-ray Detector Upgrade
- Position resolution measurement
 - Measurement setup
 - Evaluation method
 - Measured position resolution
- Summary & Prospects

µ→eγ search

- $\mu \rightarrow e\gamma$ decay is a charged lepton flavor violating(**cLFV**) decay.
 - Almost forbidden in SM+v. oscillation(Br($\mu \rightarrow e\gamma$)~10⁻⁵⁴)
 - **<u>Predicted</u>** in some theories(Br($\mu \rightarrow e_{\gamma}$)...
- The MEG experiment gives the current upper limit of $Br(\mu \rightarrow e\gamma)$.
 - Br(µ⁺→e⁺γ) < 4.2×10⁻¹³ (90% C.L.)

MEG II Experiment

- MEG II will search for the $\mu{\rightarrow}e\gamma$ decay with unprecedented sensitivity.
 - Goal: $Br(\mu \rightarrow e\gamma) \sim 6 \times 10^{-14}$ in 3 years of data acquisition.
 - Even higher intensity muon beam $(3 \times 10^7 \mu/s \rightarrow 7 \times 10^7 \mu/s)$
 - **Detector upgrade**($\times 2$ improvement for each detector)
- Liquid Xenon gamma-ray detector measures the position, energy, and timing of the incident gamma-ray.
 - 900 L liquid xenon + VUV-sensitive photosensor.

Liquid Xenon Detector Upgrade

- MEG gamma-ray detector used 2-increases to detect scintillation light of liquid xenon in the VUV range($\lambda \sim 175$ nm).
- Non-uniformity of light collection efficiency limited the resolution.
 - A small and square-shaped photosensor is desirable.
- We use VUV-sensitive MPPCs in MEG II.
 - Developed for MEG II in collaboration with Hamamatsu K.K.
 - Entrance face: 216 PMTs \rightarrow 4092 MPPCs($12 \times 12 \text{ mm}^2$)

Liquid Xenon Detector Upgrade

- Thanks to the granular readout by MPPCs, the resolution is expected to be improved by a factor of two.
 - Position resolution: 5 mm \rightarrow **2.5 mm**
 - Energy resolution: $2\% \rightarrow 1\%$
- The commissioning is in progress with the limited number of readout electronics from 2017.
- Today's theme:
 - Measured improvement of the position resolution

- Measure the position distribution of gamma-ray with a lead collimator.
 - The width of peaks in the distribution corresponds to the resolution.
 - Rotate by 90° to measure the horizontal(u) & vertical(v) resolution.
- Gamma-ray source: 17.6 MeV from ${}_{3}^{7}$ Li(p, $\gamma)_{4}^{8}$ Be reaction
- The geometry of the setup was precisely aligned by optical instruments.
 - Collimator: <50 μ m / MPPC: <500 μ m precision

2019年年次大会 15aK210-3(小林)

Satoru Kobayashi

Event Selection

8

Reconstructed position distribution

v cm

0.5 <w< 2.0 cm, MC We smeared MC truth position distribution with a Gaussian v_{rec} 0.5 <w< 2.0 cm, MC function to fit the feconstructed position distribution. MC reconstructed

• We regate σ of the Gaussian as the resolution.

- MC(Smeared)
- Measured geometry is reflected in the MC simulation. •
- Four slits were used to evaluat the position resolution. •

Position Resolution

u Resolution

v Resolution

- The average resolution of four slits.
- We observed an expected improvement of the position resolution.
 - u(horizontal) resolution: $\sigma_u = 2.5 \pm 0.2 \text{ mm}(\text{w} < 2 \text{ cm})$
 - v(vertical) resolution: $\sigma_v = 2.4 \pm 0.2 \text{ mm}(\text{w} < 2 \text{ cm})$
- W binning is sparse for u direction because of the statistics.

Position Resolution

u Resolution

v Resolution

- The resolution for deep events was worse than the expectation.
 - Not critical because the fraction of deep events is small.
- We have several candidates of this discrepancy.
 - Noise on readout electronics, S/N.
 - · Correlated noise(cross-talk and after-pulsing) of MPPC.
- We are investigating their impact on the position resolution using MC.

- The commissioning of the liquid xenon gamma-ray detector for the MEG II experiment is in progress.
- We evaluated the position resolution using a wellaligned lead collimator with slits.
- We achieved a 2.5 mm resolution for shallow events(w < 2 cm).
 - Twice better than ~5 mm in MEG as expected.
 - Thanks to the high-granularity readout with VUVsensitive MPPCs.

Prospects

- Investigation of the discrepancy of the resolution for deep events.
- Measurement of the position resolution for gamma-rays with $E_{\gamma} \sim 52.8$ MeV(signal event)
 - As in MEG, we are planning to use 55 MeV gamma-ray from charge exchange reaction($\pi^0 \rightarrow \gamma \gamma$).

Thank you for listening!!

- Evaluation in MEG
- DAQ configuration
- 2017 Measurement
- Alignment of the setup
- Position Reconstruction Algorithm
- etc...

Evaluation in MEG

Figure 7.5: Cross section along vertical v (w > 2 cm).

Table 12: Sigmas fitted in slits and edges along $v \ (w > 2 \text{ cm})$. Central slit in MC is omitted due to a difference of the geometry between data and MC.

	slit1	slit2	slit3	edge1	edge2
σ_v in 2008 Data (mm)	7.2	6.8	6.7	4.7	4.2
σ_v in MC (mm)	6.8	-	6.5	3.9	4.2
σ_v in MC truth (mm)	4.7	-	4.9	2.3	2.8

- The position distribution was fitted by Gaussian function(+offset).
- The hit position distribution of MC truth was approximated to Gaussian.

DAQ Configuration

Orientation	u	V	Тор	Outer
Date	2018/12/12	2018/12/13		
# of runs	80	142		
# of events	78681	141441	DS _ US	
# of used events	9609	41208	Bottom	

- TRG: sum of 256 MPPCs are used.
- DAQ rate: ~5 Hz
- The number of used channels was limited to ~1000 because the mass production was not yet started.
 - ~360 PMTs and ~640 MPPCs.

First Measurement in 2017 - Set up

Installed collimator (v direction)

- We tried to estimate the resolution using BG gamma-ray from muon decay.
- We reused MEG lead collimators.
 - Along with their support structure.

First Measurement in 2017 - Result

- Vague position distribution.
 - The slit of the collimator was too wide.
 - The spread of the vertex of gamma-ray was too wide(a few cm).
- Furthermore, following issues make it difficult to compare data with MC.
 - Neither detector nor collimator were aligned.
 - Support structure for the collimator was not robust enough.

We needed to optimize the collimator and align it.

Redesign of collimator

- A new collimator with narrow slits was produced.
 - Slit width: 10mm→5mm: narrow peak
 - Thickness: 18mm→25mm: better S/N
- Rigid support structure was produced.
 - Supports 15kg lead collimator with little deformation.

MC Configuration

- Geant4 MC simulation + Waveform Digitization
- Measured geometry of MPPC, collimator, vertex is reflected.
- PDE: 8% = Measured PDE in PreEng2018

Gamma-ray Source

- Gamma-ray source: 17.6 MeV from ${}_{3}^{7}$ Li(p, $\gamma)_{4}^{8}$ Be
 - Proton beam from Cockcroft-Walton accelerator.
 - Beam vertex spread <1mm (2017: a few cm)
- Data taking : ~3 days in pre-engineering run.

Alignment of Gamma-ray vertex

- The vertex of gamma-ray at target was aligned.
 - with and without B-field.
- The measured vertex position and its spread are reflected in MC simulation.

Alignment of collimator & detector

Alignment of MPPCs

- · Collimator is precisely surveyed after the installation by laser tracker.
 - Precision: ~a few 10um.
- The position of MPPCs was measured and transformed considering the position of the detector.
 - Precision: <500um.
- The measured geometry is taken into account in MC simulation.

Verification of Evaluation Method

- Complementary method is to estimate the resolution from the deviation between reconstructed and true position.
 - $\sigma(x_{reconstructed} x_{truth})$

Position Reconstruction Algorithm

- The hit position of gamma-ray is reconstructed by the fitting of light distribution of MPPC.
- The fitted position is corrected using MC simulation.

Uncertainty of Position Resolution

0.8

- Statistic uncertainty is dominant over the whole uncertainty.
- Uncertainty from $g_1 g_2$ geometry is considered to be negligible.
 - The spread eff gamma-ray vertex and the position of collimator is measured.

0.5

PDE from 2017 to 2019

- VUV sensitivity decreased by relatively ~40% after 530 hours of beam usage.
 - Very fast: We were going to use μ beam for 140 days per one year.
 - MPPC PDE reaches zero in **70 days** when we assume linear decrease.
 - Lab test at room temperature indicates that PDE decrease saturates at 30%
 - (17aG22-7(R. Onda))
- A good news is that we found the annealing were able to recover PDE by 80%
 - (16pG22-13(K. leki)).
 - We are going to do the annealing when the PDE becomes too low to achieve a good resolution.

S.Ogawa, JPS 2020s

Position resolution

- Hit position of γ is reconstructed from the # of p.e. distribution on MPPCs.
- Worse MPPC PDE will increase statistical fluctuation of observed distribution, and leads to worse position resolution.
- Slight resolution degradation expected at smaller MPPC PDE down to 2%
 - more obvious at deep event due to their small # of p.e. statistics on inner face.

6

Distribution of Deviation

