MEG II実験のさらなる感度向上を 目指したガス検出器RPCの設計最適化

大矢 淳史(東大理^A)

家城佳(東大素セ^B),大谷航^B,越智敦彦(神戸大理),恩田理奈^A,山本健介^A

Contents

Introduction

- MEG II signal and background
- Background identification detector
- Concept of RPC for background identification

• Study of rate capability for ultra-low material RPC

•Summary and prospect

MEG II signal and background

- MEG II will search for $\mu \rightarrow e \gamma$ decay
 - Identified by energy, timing and direction of e and γ
- Dominant source of background is accidental coincidence of BG-e and BG-γ mimicking the signal
 - One of the dominant source of BG- γ is radiative muon decay

Background identification detector

- Detectors to tag BG-γ from radiative muon decay
 - Detect low energy positron (1-5MeV) accompanying BG γ (~52.8MeV)
- Planned to be installed to 2 positions
 - Upstream and downstream of the target
 - MEG II sensitivity
 - 2—9%(study ongoing) improvement with upstream
 (Only t measurement)
 10% improvement with downstream
 Under development
 - 10% improvement with downstream (E and t measurement)
 - Upstream one is under development
 → Today's talk

already developed

Requirements to the upstream detector

- 1. $< 0.1\% X_0$ material budget (beam must pass through the detector)
- 2. 90% efficiency for 1-5 MeV positron
- 3. 1 ns timing resolution (RMD identification with the timing difference b/w positron & γ)
- 4. $\frac{10^8 \ \mu/s}{\mu/s}$ capable high rate performance and radiation hardness (10⁸ μ/s with 21 MeV/c , >60 weeks run)
- 5. 20 cm (diameter) detector size (45% acceptance…total 90% incl. DS)
- → Candidate: Ultra low-material RPC detector using Diamond Like Carbon (DLC)

RPC based on DLC technology

- RPC: Gaseous detector with high resistive electrodes placed face to face
 - Gas: R134a (Freon) based
 - Gap thickness: $200 \,\mu \,\mathrm{m} 2 \,\mathrm{mm}$

Performance of conventional RPC

- time resolution < ns
- material: 1% $X_0 \rightarrow$ must be improved
- Efficiency ~90% → still requires study
- rate ~kHz/cm² → must be improved

- Diamond Like Carbon(DLC) is used for resistive electrodes
 - DLC: high resistive material w/ mixed structure of sp² bond and sp³ bond
 - Advantages of DLC
 - 1. Iow material \rightarrow Sputter DLC on 50 μ m Kapton
 - 2. Adjustable resistivity
 - → Resistivity must be optimized for high rate environment (Resistivity must be low to achieve high rate capability)
 - 3. Multiple layers with lower voltage than conventional ones (next page)
 - Development initiated by a group of Kobe Univ

DLC: chemical structure

6

Proposed design of RPC for MEG II

- Readout: Al
 - → aluminized Kapton will be used on the top & bottom

- High efficiency can be achieved by multilayer design
 - n-layer efficiency: $\epsilon_n = 1 (1 \epsilon_1)^n$
 - From requirement on material budget, 4 layers at maximum

Material budget

- Kapton 50 μ m \rightarrow 0.018 % X₀
- AI 100 nm × 2枚→ 0.0023 % X₀

 \rightarrow < 0.1 % X₀ is achievable

Contents

• Introduction

• Study of rate capability for ultra-low material RPC

• Summary and prospect

Prototype detector design

Performance

Efficiency vs RPC operating voltage

384 micron - 4 layer

- 384 μ m gap 4-layer RPC
- Operated with $10M\,\Omega/sq$ resistivity
- Measured for ⁹⁰Sr beta-ray
 - → rate is lower than MEG II environment
- Performance
 - Efficiency: dependent on RPC voltage
 - Timing: ~250 ps, weakly dependent on voltage

Today's issue:

Performance appears good enough when rate is low,but this must be achieved under high rate environment

Requirements

- $\checkmark < 0.1\% X_0$ material budget
- ✓ 90% efficiency for 1-5 MeV positron
- \checkmark 1 ns timing resolution
- ✓ 20 cm (diameter) detector size

 $\succ 10^8 \; \mu\,/{\rm s}$ capable high rate performance and radiation hardness

RPC under high rate environment

• Current flowing on the resistive electrodes produces voltage drop

- The effective voltage between the gas gap is lower than the nominal one
 Degradation of detection efficiency
- Ref: G. Aielli *et al* 2016 *JINST* **11** P07014

•Current flows across the surface of the DLC

Current outgoes radially

Rate performance estimation

- Assuming the parameters tested in lab, voltage drop will be ~200V
 - 1. Electrodes' resistivity: 10 $M\Omega/sq$ (Current operating condition)
 - Size of avalanche charge: 3 pC (Assuming similar avalanche size as that of MIP)
 - 3. Shape of the resistive plate: 20 cm in diameter
 - 4. Beam condition: $10^8 \mu$ /s with 21 MeV/c, gaussian beam(σ =2 cm)
 - → Not acceptable
- Required improvements for the studies above
 - Reduce electrodes' resistivity to $1M\,\Omega/sq$ level
 - Measurement of the RPC response to low momentum μ (Since the space charge effect is strong for RPC, saturation is expected)

Problem for lower resistivity

- With $1M\Omega/sq$ resistivity, suffer from frequent discharge
 - Discharge appears typically @2.6—2.9kV
 → 40—50% efficiency
 - At least 3kV is required for 90% efficiency
- Electrodes' damages are found after discharge
 - Pattern of the damage suggests discharge is frequent around the spacers

Spacers(2.5 mm pitch)

Investigation of the cause of discharge

- Cause of the discharge is under investigation
 - One possibility: Non-uniformity of electric field around the spacers
 - → Calculation of the electric field around them suggests this idea

Possible solutions

- Fix discharge problem to reach nominal HV with low resistivity DLC
 - The cause of the discharge must be better understood
- Thicker gap
 - Larger efficiency is easily obtained
 - Discussion so far is based on 384 μ m design

efficiency vs electric field

• Other ideas ?

Single layer efficiency. To translate into 4 layer, apply $\epsilon_n = 1 - (1 - \epsilon_1)^n$

15

Summary and Prospect

- Developing ultra-low material RPC for MEG II experiment
 - Tag BG- γ to improve the sensitivity
 - Performance requirements have been met except for rate capability
- Ongoing study on RPC rate capability has been discussed
 - W/ operating condition so far, rate capability is insufficient
 - Large efficiency decrease under high rate environment
 - Electrodes' resistivity must be smaller, but we suffer from discharge when sufficiently low resistivity electrodes are used
 - Looking for a solution
 - > Investigation of RPC's discharge problem to enable low resistivity RPC
 - Optimization of gap thickness or other solutions
- Need to confirm the signal saturation for low momentum muon
 - Beam test @PSI planned this winter

Backup

ビームμとか

●粒子の拡がり ✓ビームの拡がりはσ=2 cm ✓輻射崩壊陽電子は 2.8 cm

Result: Timing resolution for single layer

- Single layer timing resolution is measured changing the gap thickness
 - (Normally, 4-layer resolution is better)
- Timing resolution
 - Determined from the timing difference b/w RPC and reference counter
 - RPC timing: 50% constant fraction •

Timing resolution is good enough at least up to $520 \,\mu$ m (< 1ns required)

At least, gap thickness can be b/w 370 μ m and 520

timing resolution vs electric field

Result: Detection efficiency for single layer

- Single layer efficiency is measured changing the gap thickness
 - 40% single layer efficiency is required to achieve 90% w/ 4-layer
 - $\epsilon_n = 1 (1 \epsilon_1)^n$
 - For each thickness, measured changing the operating voltage
- Efficiency
 - Determined from the fraction of RPC hits in the triggered events
 - RPC threshold = 10 mV

sufficient efficiency for $\geq 370 \,\mu$ m thickness

Trash

Parameters relevant to rate performance

- With parameters as follows, good rate capability is expected
 - Electrodes' resistivity: $1M\Omega/sq^{-1}$
 - Size of avalanche charge: 1 pC

More detailed study required (following slides)

→ Result in 25V voltage drop at maximum (< 10 % efficiency loss)

Study on the avalanche charge

- Measured using ⁹⁰Sr beta ray
 - 3 pC on average at 3 kV for 384 μ m gap
 - Similar result is reported in
 G. Aielli *et al* 2016 *JINST* 11 P07014
- In MEG II experiment, rate capability against 21 MeV/c muon is relevant
 - Larger ionization is expected for muon

¹⁰⁰ ⁹⁰ ⁹⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ⁵⁰ ⁴⁰ ⁵⁰ ⁴⁰ ⁵⁰ ⁴⁰ ⁵⁰ ¹⁰ ²⁰ ¹⁰ ²⁷⁰⁰ ²⁷⁵⁰ ²⁸⁰⁰ ²⁸⁵⁰ ²⁹⁰⁰ ²⁹⁵⁰ ³⁰⁰⁰ ⁷⁰⁰ ³⁰⁰⁰

384 micron - 4 layer

 Measurement using low momentum muon is necessary to look into the rate capability in MEG II experiment
 → Planning a measurement using muon beam this year @PSI

Efficiency under more realistic assumptions

- For both of the following scenarios, 40—50% efficiency is expected
 - Operate RPC with $10M\Omega/sq$ DLC at 3kV (voltage drop will be 200V level)
 - Operate RPC with $1M\Omega/sq$ DLC at 2.9kV (voltage drop will be 30V level)
 - These results use the avalanche charge measured for ⁹⁰Sr electron
 - ... This might become worse with the muon's larger ionization

Rate performance estimation

- Assuming the parameters tested in lab, voltage drop will be ~200V
 - 1. Electrodes' resistivity: $10 M\Omega/sq$ (Current operating condition)
 - 2. Size of avalanche charge: 3 pC (Assuming similar avalanche size as that of MIP)
 - 3. Shape of the resistive plate: 20 cm in diameter
 - 4. Beam condition: $10^8 \mu$ /s with 21 MeV/c, gaussian beam(σ =2 cm)

aa

- → Not acceptable. Electrodes' resistivity must be lower
- (*) : In other studies, avalanche size is measured with MIP, whereas avalanche size for 21MeV/c muon is relevant in our case.
 - → Expecting RPC's well-known strong saturation effect, we are planning a measurement @PSI