Performance Evaluation of Positron Spectrometer for MEG II Experiment MEG II実験陽電子スペクトロメータの性能評価

The University of Tokyo, ICEPP Usami Masashi on behalf of MEG II Collaboration 14th Sep. 2020

Core-to-Core Program

- Introduction
 - MEG II experiment
 - Positron Spectrometer
 - pixelated Timing Counter (pTC)
 - Cylindrical Drift CHamber (CDCH)
- Analysis Upgrade and Evaluation (MC)
- Summary and Prospect

MEG II Experiment -I-

- International particle physics experiment at Paul Scherrer Institut (PSI, Switzerland)
 - Japan, Italy, Switzerland, Russia America
- Search for cLFV ultra-rare muon decay: $\mu \rightarrow e\gamma$
 - cLFV: charged Lepton Flavor Violation
 - prohibited in standard model, predicted in the new models
 - To find the $\mu \to e \gamma \;$ means to find the new physics !
 - Complementary to high-energy frontier (e.g. LHC, ILC)
 - Forerunner to the other cLFV experiment (e.g. COMET, Mu3e)

Signal Kinematics

180° (back to back) at the same timing from the same position -> Timing, Position, Momentum is the key parameters

MEG II Experiment -II-

DS-RDC detector	Cylindrical Drift Chamber Positron wire tracker Positron Bending magnet	The most intense DC muon beam in the world available at PSI <u>MEG:3×10⁷μ⁺/s \rightarrowMEG II 7×10⁷μ⁺/s <u>Meg Positron Spectrometer</u> Measure positron vertex position momentum and timing</u>		
A REPORT OF A R		Positron Resolution / Efficiency	MEG	MEG II Design (CDCH 10 layer)
e	Pixelated Timing Counter	Theta (mrad)	9.4	5.3
	Positron timing detector	Phi (mrad)	8.7	3.7
Liquid Xe Gamma	r obiti on thing detector	Momentum (keV)	380	130
ray detector		Vertex Z (mm)	2.4	1.6
Tay detector		Vertex Y (mm)	1.2	0.7
		Positron time (ps)	108	46
		Efficiency (%)	30	70

- Upgraded experiment from MEG, ~×10 sensitivity (Br ~ 6×10⁻¹⁴ 90% C.L.)
 - 3-year DAQ period (20 week / year)
 - ×2 beam intensity, detector resolution, efficiency with new positron spectrometer

The design and detail: The European Physical Journal C volume 78, Article number: 380 (2018) The design of the MEG II experiment

pixelated Timing Counter (pTC)

 σ (Timing) ~ 80 ps with each counter

~ 8 hits/positron on average

- MEG II pTC measure the positron crossing timing with the precision of O(30 ps)
- 512 "pixelated" design enables the multi-hit information (~8 hits / positron on average)

Ref: The European Physical Journal C volume 78, Article number: 380 (2018) The design of the MEG II experiment

Cylindrical Drift Chamber (CDCH)

~2 m

- Ultra-low mass (90% helium-based mixture and 10% isobutane) cylindrical stereo wire chamber to reconstruct the positron track with 2 times better efficiency (~70%) from MEG
- 192 drift cell / layer (7-9mm square shape) x 9 layers

Ref: The European Physical Journal C volume 78, Article number: 380 (2018) The design of the MEG II experiment

Commissioning Summary

- 2015-2017: pTC commissioning
 - Full detector was tested in 2017
 - Timing resolution below 40 ps was achieved
 - reported in Mar. 2018 JPS by M. Nishimura
- 2018-2019: Spectrometer (pTC + CDCH) commissioning
 - Readout electronics was strictly limited due to the delay of schedule, but many new experience from hardware / software points of view
 - First look of the commissioning data reported in Mar. 2020 by M. Usami
- In this talk, we present the refined algorithms / methods with MC simulation updated based on the commissioning results

Assigned max. readout/year	pTC counters	CDCH cells	note
2017	256	-	Both DS/US pTC tested, mock-up CDCH
2018	128	96 (prototype)	Only DS pTC installed
2019 Oct	128	96 (prototype)	Only US pTC installed
2019 Nov	128	96 (prototype)+ 96	Final version readout for CDCH installed

- Introduction
- Analysis Upgrade and Evaluation (MC)
 - Algorithm Overview / Recent Update
 - Evaluation Methods
 - Evaluation with Double Turn
 - Evaluation with Michel Fit
 - Comparison with MC-Evaluation
- Summary and Prospect

Recent Update

Response Simulation Update (CDCH)

Based on the commissioning data

- Realistic Electronics Gain
 - factor ~ 3.7 decrease of gain
- Realistic Noise Level
 - factor ~ 2 increase
- z dependence of the gain
 - Smaller gain at larger z (edge) due to the large cell size
- Space-Charge Effect
- Realistic CDCH waveform shape by SPICE simulation

Reconstruction Update

- New waveform analysis algorithm
- Set analysis timing window around the signal region
- Positron selection method

Algorithm Overview

- The major update comes from ...
 - Waveform Analysis
 - Positron Selection

Waveform Analysis

- Previous algorithm does not work well with severe S/N
- Cross-Fitting Algorithm
 - Assumption: Waveforms at the both end of a wire are the same shape except for the amplitude
 - If a waveform is observed at the one side, we try fitting at the other end to find the signal
 - Minimize the following with MINUIT:

$$\chi^2 = \int \frac{(f(t) - c \times g(t + \tau))}{\sigma^2} dt$$

f(t): fit function (the waveform of one side) g(t): waveform from the other end c, τ : constant value to adjust the fitting

Timing Window

- Timing window for waveform analysis
 - $T_{\text{signal}} 7.5 \text{ ns} < t_{\text{hit}} <$
 - T_{signal} + 282.5 ns 12.5 ns × iPlane
 - No interests on pile up hits, skip the record
 - Efficient and precise reconstruction of track with interest
 - Efficiency: + ~5%

12

Positron Selection

Event Pre-Selection	Rough cut for the latter analysis e.g. (for signal) 40 MeV < Pe < 65 MeV $-1 < \cos\theta_{e\gamma} < -0.9$ $-12 \text{ ns} < t_{e\gamma} < 12 \text{ ns}$
Quality Cut	Check the tracking quality independent criteria of michel / signal e.g. χ^2 , covariance from KF (cov _{θ} < 20 mrad etc) $0 \le n_{turn} \le 9$
Track Selection	Select a good track for physics analysis / michel analysis e.g. Propagation to fiscal target volume, Matching to pTC cluster, covariance, propagation length, etc Selection based on χ^2 /dof

- Efficiency and performance should be evaluated with the same condition to the physics analysis – One track must be picked up from one event
 - Also, the acceptance is checked before the pre-selection
 - The criteria can be tuned for michel / signal / other analysis

MC Evaluation

- * Correlation b/w thata / phi is included in design value $\Re \sigma(T_{\text{calib}}) \sim 10 \text{ ps}, \sigma(T_{\text{sync}}) \sim 25 \text{ ps} \text{ added, 1-year radiation effects for JPS reports}$
- Though the hardware situation becomes severe (especially S/N \sim 1/10), the efficiency is recovered by software side
 - Resolution becomes slightly worse because of the worse S/N

Evaluation Method

- The positron reconstruction algorithm has been developed and established
- Realistic and reconstructed data-driven performance evaluation must be prepared
 - Positron Momentum: Michel Fit / Double Turn
 - Positron Tracking: Double Turn
 - Positron Timing: Even-Odd
 - Already reported in Mar. 2018 by M. Nishimura, Sep 2019 by M. Usami, Sep 2019 by K. Yanai ...

Michel Fit

- The theoretical Michel Spectrum is well known
 - Kinoshita & Sirlin 1959 (implemented in RooFit package)
- The reconstructed energy at the vertex can be fitted with the following formula:

$$S_{\rm rec}(E_e^{\rm rec}) = \sum (S_{\rm theo} \times F_{\rm Acceptance}) (E_e^{\rm param}) * R_{\rm response}$$

•
$$R_{\text{response}} = f_{\text{core}} \times \text{gaus}_{\text{core}} + (1 - f_{\text{core}}) \times \text{gaus}_{\text{tail}}$$
 (Double Gaussian)
• $F_{\text{Acceptance}} = \frac{1 + \text{erf}\left(\frac{E_e^{\text{param}} - \mu}{\sqrt{2}\sigma}\right)}{2}$ (Acceptance Function)

%Scaling parameter omitted

Michel Fit

Work In Progress

MEG II

MC (7e7) MEG I 325 keV 146 keV $\sigma_{\rm core}$ 1.91 MeV 2.05 MeV $\sigma_{\rm tail}$ 0.852 0.853 f_{core} 49 MeV 47.2 MeV $\mu_{\rm acc}$ 2.5 MeV 2.48 MeV $\sigma_{\rm acc}$

2013 Data

- Compared with MEG-I,
 - The Michel Edge becomes x2-3 sharper
 - The acceptance around the signal region becomes flat
- Preliminary results
 - Selection criteria for Michel fit are under studying
 - Currently I did not use "timing window" written in P. 12 for this analysis
 - Fit results are sensitive to fit range, initial parameter, limit range etc...

MEG I value from: Ph.D thesis by D. Kaneko (2016)

Double Turn Method

- Most of positrons has "1.5" turn in CDCH before pTC
- Sometimes positrons has < 2 turns, and these positrons can be used for Double Turn Analysis
 - Split "2-turn track" to "2 single-turn tracks"
 - Extrapolate the both tracks to the imaginary plane
 - Compare the state

Double Turn Analysis

- Comparable results obtained from Double turn analysis
 - The discrepancy and tail events will be checked

19

- Introduction
- Analysis Upgrade and Evaluation (MC)
- Summary and Prospect
 - Summary
 - Prospect: Toward Further Optimization

Summary and Prospect

- The simulation settings for MEG II experiment is updated more realistic based on the data taken in 2018-2019
 - S/N of CDCH waveform: roughly ~1/10, z-dependence etc...
- The reconstruction algorithm is refined, especially
 - New CDCH waveform analysis
 - Positron Selection task
 - Reached the target efficiency: 70%
- The realistic and data-driven performance evaluation
 - Double turn analysis : Tracking
 - Michel fit : Momentum
 - Even-Odd : Timing

Toward Further Optimization

- The reduced muon beam may be a realistic option of MEG II
 - PDE decrease of XEC MPPC
- Positron spectrometer situation with several beam intensities:
 - The accumulated statistics become smaller, but the reconstruction efficiency will be better
 - Resolution becomes slightly better
 - Less radiation damage (pTC) / pile up (CDCH)
- Updated sensitivity value with several scenario from positron side will come soon
 - Hopefully at the next JPS ...

^{~10%} efficiency recovery at the MEG I intensity Resolutions are in backup

MC Evaluation

	No pile up (Signal Only)	3e7 beam	5e7 beam	7e7 beam
theta [mrad]	6.3	6.4	6.7	6.8
phi [mrad]	5.8	6.0	6.1	6.5
momentum [keV]	79	85	89	93
z [mm]	1.4	1.6	1.6	1.7
y [mm]	0.7	0.7	0.8	0.8
time [ps]	41	41	43	43
Efficiency [%] (Core)	85.0% (82.0%)	82.7% (79.0%)	79.1% (74.5%)	74% (70.0%)

24

