

Core-to-Core Program

荷電レプトンフレーバを破る $\pi^0 \rightarrow \mu e$ 崩壊探索実験の提案

山本 健介 (東大理) 家城 佳^A、森 俊則^A (東大素セ^A)

2020年9月14日(月) 日本物理学会2020年秋季大会

<u>Outline</u>

- $\pi^0 \rightarrow \mu e \text{ decay}$
 - Overview
 - POEM experiment
 - Signal and BG

- Detection efficiency
 - Optimize LH2 target size
 - Signal selection
 - Trigger DAQ

- Expected experimental setup
 - MEG II experiment
 - Detector: CDCH
 - Target: LH2 target
- Current status of POEM experiment

• Summary & prospects

$\pi^0 \rightarrow \mu e \text{ decay}$

- $\pi^0 \rightarrow \mu^+ e^-$ decay violates charged lepton flavour
- The decay is similar to μe conversion, which is one mode of charged lepton flavour violation (cLFV)
- Present upper limit on the decay: 3.63 x 10⁻¹⁰ (90% C.L.) [1]
- This limit is given by KTeV experiment at Fermilab in 2008 as a by-product of kaon rare decay search [2]

 μ – e conversion

References:

[1] 2018 PDG

[2] "Search for Lepton-Flavor-Violating Decays of the Neutral Kaon", Phys. Rev. Lett. (2008) 100:13

POEM experiment

- P0EM experiment: Experiment to search for $\pi^0 \rightarrow \mu^+ e^$ decay at Paul Scherrer Institut (PSI) in Switzerland
- The advantages over previous searches are:
 - <u>High statistics</u>
 - 1.4 x 10⁶ π^- /s are incident on liquid hydrogen (LH2) target
 - ~60% π^- generates π^0 by charge exchange (CEX) process $(\pi^- + p \rightarrow \pi^0 + n)$ in LH2
 - \rightarrow ~10¹¹ π^0 are generated in one day
 - Low background
 - Source of μ^+ would not exist

Signal & Background

Background

- *e* from scattering, $\pi^0 \rightarrow e^+ e^- \gamma$ decay, or pair production
- μ^- from π^- decay in flight
- p from π^- interaction w/ nuclei
 - Elastic or inelastic scattering:

 $\pi^- + N \rightarrow \pi^- + N \text{ (or } N')$

• Absorption:

 $\pi^- + N \rightarrow N' + \text{several nuclei}$

Distinguish signal μ^+ from BG by energy deposit and trajectory

Expected experimental setup

- High-intensity π^- beam at PSI
- Target is liquid hydrogen
- Detector for signal μ^+ from $\pi^0 \rightarrow \mu^+ e^-$ decay is cylindrical drift chamber (CDCH) used in MEG II
- COBRA magnet used in MEG II is used for bending charged particles

MEG II experiment

- MEG II searches for $\mu \rightarrow e\gamma$ decay which is one of cLFV
- Use the most intense μ beam
- POEM experiment will be a parasite on MEG II
- POEM will use CDCH and COBRA magnet w/ 0.8 magnetic field scale factor
- COBRA magnet is developed for bending MEG II signal e⁺ w/ constant radius
- Charge can be identified by particles' trajectory bent by magnetic field

Cylindrical drift chamber (CDCH)

- CDCH has been developed for measuring trajectory and momentum of MEG II signal e^{+}
- The features are the following:
 - 1,728 sense wires (= 192 wires/layer x 9 layers)
 - Stereo wires configuration
 - Gas choice: He:isobutane = 90:10
- Readout from 2/3 wires
- The performance study is in progress

Liquid hydrogen (LH2) target

Current status

- Plan to start POEM experiment

 Examine π⁰ → μe decay
 Experimental setups

 Estimate sensitivity ← Need to know efficiency
 Optimize LH2 target
 Signal selection
 Trigger DAQ
 Sensitivity
- Prepare LH2 target
- Construct analysis method
- Do beam test at PSI

Signal selection in analysis (1/2)

- Cut tracks whose initial position is out of LH2 target
- ← It has no influence on μ^+ detection efficiency due to no cut of signal μ^+ tracks
- dE/dx is calculated by energy deposit in CDCH divided by track length
- Uncertainty of track length and of energy deposit?

Signal selection in analysis (2/2)

- Momentum will be calculated by rotation radius of the track
- Charge of particles can be identified by reconstructed tracks orientation
- Signal μ^+ can be identified in CDCH

Trigger DAQ

- POEM plans to use MEG II DAQ system
- MEG II DAQ rate ~ 10 Hz \rightarrow Rough idea in P0EM
- Trigger conditions requirements:
 - Easy construction of online logic
 - \leftarrow Reconstructed information cannot be used
 - Selection of more <u>signal-like</u> events
 - ← Exit from LH2 target & Large energy deposit

Trigger conditions

<u>Scinti TRG</u>

- Install plastic scintillators for trigger
- Require hits at trigger scintillators
- Require energy deposit over 200 keV threshold at side scintillators

SecLay TRG

- Require hits at inner 3 layers at a sector
- ← Signal μ^+ must pass through CDCH from inside

<u>dE/layer TRG</u>

- Require energy deposit over 95 keV threshold at a layer in CDCH
- ← Signal μ^+ has larger energy deposit than e

~90% signal events were cut at trigger DAQ rate = 9.1 Hz

μ^+ detection efficiency

- 36.0% π^- generate π^0 by CEX
- 14.9% signal μ^+ generated by $\pi^0 \rightarrow \mu^+ e^-$ exit from LH2 target
- 45.9% μ^+ out of exiting from LH2 target is detected in CDCH

→ Signal μ^+ detection efficiency is 2.46% out of all the π^- beam

- 10.5% μ^+ out of detected in CDCH is triggered at 9.1 Hz
- \rightarrow Signal μ^+ detection efficiency is 0.26% out of all the π^- beam
- Much lower detection efficiency than we expected
- \rightarrow Need to review trigger conditions

<u>Summary</u>

- We propose the P0EM experiment to search for $\pi^0 \rightarrow \mu^+ e^-$ decay which is one of cLFV modes at PSI
- POEM experiment will be a parasite on MEG II
- The setups use CDCH to detect signal μ^+ , COBRA magnet to bend tracks of charged particles , and LH2 target
- LH2 target size is optimized
- Signal μ^+ can be identified in CDCH
- Detection efficiency of μ^+ is 2.46% w/o trigger
- Thinking of trigger DAQ in progress

<u>Prospects</u>

- Review trigger conditions to find detection efficiency
- → Estimate sensitivity
- Make LH2 target
 - Target strength test is on going
- Construct analysis method
 - Online logic in trigger
 - Reconstruction of particles' tracks
- \rightarrow Prepare to do beam test

<u>Backups</u>

<u> π^{-} interactions and BG</u>

- π^- interacts with nucleus in the following reactions:
 - Elastic or inelastic scattering: $\pi^- + N \rightarrow \pi^- + N$ (or N')
 - Absorption: $\pi^- + N \rightarrow N' + \text{several nucleus}$
 - Charge exchange (CEX): $\pi^- + N \rightarrow \pi^0 + N'$
 - Radiative capture: $\pi^- + N \rightarrow \gamma + N'$
- The nuclei generated through scattering will deposit too much energy in CDCH due to its little momentum
- \rightarrow The nuclei will not be BG candidates
- Absorption does not occur in LH2 because violating energy conservation
- But absorption occurs in materials w/ larger Z than that of hydrogen

20

Signal μ^+ momentum distribution

<u>dE/dx vs momentum</u>

Scinti TRG (1/2)

- Install plastic scintillators for trigger
- Front scintillator is installed in front of LH2 target
- The size is 18 mm x 32 mm x 5 mm
- (Collimator hole size is 14.4 mm x 28.4 mm)
- Require hit at front scintillator
- This is for removing CDCH detection of μ^- generated by π^- decay

Scinti TRG (2/2)

- Side scintillators are installed by Mylar windows of outer box
- The size is 60 mm x 80 mm x 250 μm
- (Outer Mylar window size is 60 mm x 80 mm)
- Require hit at side scintillator and energy deposit over 200 keV

Side scintillators

(t = 250 um)

LH2 target

Front

Collimator

scintillator

- The thickness is 250 μ m due to direct detection of signal μ^+
- <u># of triggered events is 1,764 out of 100,000 π^- events</u>

Energy deposit at side scintillator

<u>dE/layer TRG</u>

- Signal μ^+ has larger energy deposit per layer than e
- \rightarrow Cut *e* tracks w/ small dE/layer

- Threshold is 95 keV/layer to make trigger rate <10 Hz w/ 3 triggers
- ← This results in too large signal loss (Triggered signal μ^+ is ~10% out of detected in CDCH)